КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ

ПРОЦЕССЫ И АППАРАТЫ ПИЩЕВЫХ ПРОИЗВОДСТВ

ОПРЕДЕЛЕНИЕ ОСНОВНЫХ ХАРАКТЕРИСТИК ИЗМЕЛЬЧЕНИЯ СЫРЬЯ

Методические указания к выполнению Лабораторных и практических работ

Министерство сельского хозяйства Российской Федерации Красноярский государственный университет

ОПРЕДЕЛЕНИЕ ОСНОВНЫХ ХАРАКТЕРИСТИК ИЗМЕЛЬЧЕНИЯ СЫРЬЯ

Методические указания к выполнению Лабораторных и практических работ

Рецензент:

В.Н. Холопов, д-р техн. наук, проф. кафедры АТЛМ СибГТУ

Составители: Ченцова Л.И. Тепляшин В.Н. Невзоров В.Н.

Ченцова, Л.И.

Определение основных характеристик измельчения сырья: метод. указания к выполнению лабораторных и практических работ / Л.И. Ченцова, В.Н. Тепляшин, В.Н. Невзоров; Краснояр. гос. аграр. ун-т. – Красноярск 2013. - с.

Предназначено для студентов по направлению: 260100.62 «Продукты питания из растительного сырья», профили: «Технология хранения и переработки зерна», «Технология хлеба, кондитерских и макаронных изделий», «Технология бродильных производств и виноделия», «Технология жиров, эфирных масел и парфюмернопродуктов», «Технология косметических консервов И 151000.62 «Технологические пищеконцентратов»; машины оборудование», профиль «Пищевая инженерия малых предприятий», «Машины и аппараты пищевых производств». По специальности «Процессы и аппараты пищевых производств».

Печатается по решению редакционно-издательского совета Красноярского государственного аграрного университета

Красноярский государственный аграрный университет, 2013

Основы теории

пищевой измельчения широко применяется промышленности. Материал в конусных дробилках измельчается раздавливанием его при сближении поверхностей внутреннего наружного неподвижного конусов. По своему подвижного И назначению конусные дробилки разделяются на дробилки крупного, дробления. лабораторной мелкого В дробилке И среднего дробилка конусная c жерновами использована ДЛЯ мелкого дробилки дробления. Конусные высокой отличаются производительностью (вследствие воздействия непрерывного дробящего усилия на материал), равновесной работой, высокой степенью измельчения. Недостаток по сравнению с щековыми: более сложная и дорогая конструкция, большая высота.

Эффективность измельчения на мельнице оценивается степенью измельчения, производительностью, расходом энергии на проведение процесса.

Степень измельчения материала можно определить по формуле:

$$i = \frac{F_{II}}{F_{M}},\tag{1}$$

где F_{Π} — суммарная поверхность частиц измельченного продукта; F_{M} — суммарная поверхность частиц исходного материала.

Учитывая сложность в определении суммарной поверхности частиц исходного материала и измельченного продукта, чаще находят степень измельчения более простым путем

$$i = \frac{d_{ucx.cp}}{d_{usm.cp}},\tag{2}$$

где $d_{ucx.cp}$ — средний размер частиц исходного материала; $d_{uзм.cp}$ — средний размер частиц измельченного продукта.

Для определения среднего размера частиц до и после измельчения среднюю пробу материала просеивают при помощи рассевки-анализатора через набор сит с отверстиями разных размеров, взвешивают сходовые фракции и находят числовое значение размера частиц по следующей формуле:

$$d_{cp} = \frac{\sum_{i=1}^{-k} d_i x_i}{\sum_{i=1}^{k} x_i},$$
(3)

где d_i —средний размер частиц і-й сходовой фракции материала, который находится как полусумма размеров отверстий сита, с которого получен сход материала, и ближайшего сита, через, которое прошел этот материал, мм; x_i — масса і-й сходовой фракции материала, кг или % к массе просеиваемой навески.

Ориентировочный расчет производительности Q (в м³/ч) конусных дробилок выполняют по эмпирической формуле

$$Q = \frac{340\mu n D_n r d}{tga} \tag{4}$$

где μ — коэффициент раздробленного материала (μ =0,3...0,5); n — число оборотов вала, мин⁻¹; D_n — наружный диаметр разгрузочной щели, м; r — эксцентриситет, м; d — средний диаметр кусков дробленного материала, м; a — угол захвата, a=2 ϕ ; ϕ — угол наклона подвижного жернова, град.

Частоту вращения жернова определят по эмпирической формуле, об/мин

$$n = 47\sqrt{\frac{tga}{r}}. (5)$$

Ориентировочно потребляемую мощность N (кВт) электродвигателя дробилки на процесс измельчения при дроблении с большими степенями измельчения рассчитывают по эмпирической формуле, так как в основном учитывается лишь работа образования новых поверхностей:

$$N = K_1 K_2 \rho D^2 n, \tag{6}$$

где K_2 — эмпирический коэффициент, который в основном зависит от получаемой крупности и физико-механических свойств измельчаемого материала, кВтс/кг; D — диаметр кусков недробленого материала, м; ρ — плотность материала, кг/м 3 .

Значения этих эмпирических коэффициентов следующие: для сит с диаметром отверстии до 3 мм $K_1 = \frac{3.6}{10^5} : \frac{4.7}{10^5}$; для чешуйчатых сит с диаметром отверстий 2,5х20 и сит с диаметром отверстии от 4 до 10 мм $K_1 = \frac{6}{10^5} : \frac{10.5}{10^5}$, (меньшее значение коэффициента K_1 в том и другом случаях принимают для сит с меньшим размером отверстий); коэффициент K_2 =2,0...4,0; причём меньшее значение коэффициента принимают при крупном размоле, а большее — при мелком размоле.

Как видно из вышеизложенного, как производительность, так и расход энергии на измельчение во многом зависят от крупности получаемого продукта. Крупность (дисперсности) мельницах раздавливания в основном ограничивается размером и конфигурацией отверстий сита. Чем меньше размер отверстий сита в получаемый мельче готовый продукт, мельнице, тем после измельчения.

Цель работы

- 1. Ознакомление с устройством и работой мельницы раздавливающего действия.
- 2. Определение крупности (дисперсности) исходного материала и измельченного продукта и степени измельчения материала на мельнице.
 - 3. Определение расхода энергии на размол.

Описание экспериментальной установки

В состав экспериментальной установки входит мельница и вспомогательное оборудование: лабораторный рассеивательанализатор, набор сит с отверстиями (5, 4, 3, 2, 1 мм), технические весы и секундомер.

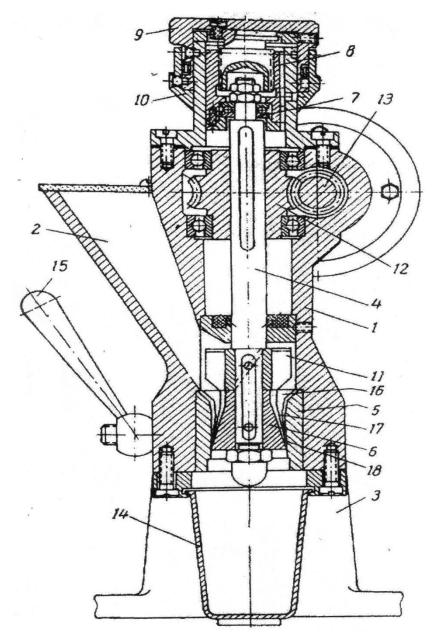


Рисунок 1 - Экспериментальная установка:

1 - корпус; 2 - загрузочная воронка; 3 - станина; 4 - вертикальный вал; 5 - жернов; 6 - поверхность жернова; 7 - подшипник; 8 - гайка; 9 - рукоятка; 10 - лимб

Мельница состоит из корпуса, в котором расположены два жернова - один неподвижный и второй - вращающийся на вертикальном валу, а на последнем насажена рукоятка с лимбом, и съемного стакана, размещенного у выходного отверстия. Между рабочей поверхностью жерновов, выполненных с рифлями, имеется кольцевой зазор.

Предлагаемая мельница предусмотрена для размола зерна любых культур, например, гороха, фасоли, кукурузы, пшеницы. При этом потеря влаги минимальна.

Предлагаемая мельница состоит из корпуса 1 с приемной воронкой 2, смонтированной на станине 3, внутри которого размещены вертикальный вал 4, неподвижный жернов 5, жестко закрепленный на валу 4 конусообразный жернов 6, связанный с валом 4 через подшипник 7 и гайку 8, а также рукоятку 9 с лимбом 10, досылателем 11, размещенное на валу червячное колесо 12 с червяком 13, с червяком 13, стакан 14 для приема размолотого продукта.

Жернов 5 размещен в гнезде корпуса и зажат кулачками с помощью рукоятки 15. Рабочие поверхности жерновов 5 и 6 имеют сложную конусообразную форму и выполнены с рифлями. Между этими поверхностями образован кольцевой зазор.

В рабочем состоянии конусообразная поверхность жерновов образует зоны 16, 17, 18, которые характеризуются различным числом, уклоном и высотой рифлей. Это обеспечивает дифференциальный режим измельчения и размола. Так, зона 16 обеспечивает разрушение продукта, зона 17 - размельчение, зона 18 - размол с получением продукта необходимой фракции.

Величину кольцевого зазора регулируют рукояткой 9 с лимбом 10 согласно заданной фракции крупноты помола путем перемещение вала 4 с жерновом 6 по вертикали.

Досылатель 11 расположен на валу 4 над жерновами и предназначен для подачи продукта в кольцевой зазор.

При настройке, соответствующей нулевому делению лимба, обеспечена минимальная фракция крупности помола. Дальнейшую настройку на крупноту помола производят поворотом рукоятки по делению лимба.

Методика проведения испытания

1. Из зернового материала (пшеница, ячмень, кукуруза) отбирают 3 навески по 30 г каждая, которые измельчают в мельнице в течение 10, 20, 40 с при помощи рассевки-анализатора на наборе сит с диаметром отверстий 5, 4, 3, 2, 1 мм. Рассеивают измельченный материал, остаток на каждом сите взвешивают на технических весах,

пересчитывают в % к общей массе навески, результаты вносят в таблицу 1 и определяют среднее значение сходов с одинаковых сит.

Таблица 1 – Результаты измерений рассева пробы зерна

№ опыта и повторности	Остаток на сите,% диаметром отверстий, мм							
	Остаток на дне,	1	2	3	4	5		
	X_{1}	X_2	X_3	X_4	X_5	X_6		
I колонка сит								
II колонка сит								
III колонка сит								
Среднее значение								

По формуле 7 находим d_{cp} , % средний размер частиц:

$$d_{cp} = \frac{0.5X_1 + 1.5X_2 + 2.5X_3 + 3.5X_4 + 4.5X_5 + 5.5X_6}{100},$$
(7)

где X_1 средний остаток на дне, %; X_2 , X_3 , X_4 , X_5 , X_6 - средний остаток на сите с отверстиями диаметром 1, 2, 3, 4, 5, мм.

В таблицу 2 записывают данные с наименьшим размером сит, X_1 %, определяют все остальные величины, входящие в таблицу 2.

Таблица 2 - Основные характеристики измельчения зерна

				1 1					
№	Диаметр	Macca	Время	Произво	Pac	сход	Удельн	Диспе	Степен
опыта	отверсти	навески	отбора	дительно	энер	огии,	ый	рснос	Ь
	Я	M_c , кг	навески	сть,	K.	Вт	расход	ть d ,	измель
	сита,		τ, c	G, кг/с	на	на	электроэ	MM	чения,
	D_c , MM				холост ой ход,	измельч ение,	нергии		i
					N_x	N_P	на		
							измельч		
							ение ΔN ,		
							кВтс/кг		
1	2	3	4	5	6	7	8	9	10

Обработка опытных данных

1. Истинную производительность мельницы G_{ucm} , кг/с определяют по формуле:

$$G_{ucm} = \frac{m_{\tau}}{\tau},\tag{8}$$

где m_{τ} - масса отобранной навески измельченного продукта, кг; τ - время, в течение которого отбирали навеску, с 19, 10, 20, 40).

- 2. Согласно методике, описанной выше по формуле (1-3) определяют средний размер частиц измельченного продукта.
 - 3. По формуле 1-2 вычисляют степень измельчения материала.
- 4. Из формул (1-4, 1-6) находят истинные значения коэффициентов K_1 и K_2 для данного материала и сита мельницы.
- 5. Удельный расход энергии ΔN кВтс/кг определяют по формуле:

$$\Delta N = \frac{N_{pa\delta} - N_{xx}}{G_{ucm}},\tag{9}$$

где N_{pab} - мощность электродвигателя мельницы при рабочей нагрузке (определяют по показаниям ваттметра), кВт.

Все полученные экспериментальным и расчетным путем данные заносят в таблицы 1 и 2 протокола измерений.

В заключении делают вывод о влиянии размера отверстий сита мельницы на коэффициенты K_1 и K_2 , дисперсность, степень измельчения, удельный расход энергии на измельчение, а также на производительность мельницы.

Контрольные вопросы к лабораторной работе

- 1. Каков принцип действия и устройство мельницы?
- 2. Какие существуют способы загрузки материала в мельницу?
 - 3. Как оценивается эффективность работы мельницы?
 - 4. Как определяется средний размер частиц продукта?
- 5. Какие основные параметры мельницы влияют на ее производительность и расход энергии при измельчении материала?
- 6. Как влияет размер отверстий сита на крупность измельчаемого продукта, на расход энергии и производительность мельницы?

Библиографический список

Основная литература

- 1. Кавеццки Г.Д., Васильев В.В. «Процессы и аппараты пищевой технологии». М.,: Колос, 2010. с. 551.
- 2. Ларин В.А., Малахов Н.Н., Плаксинов Ю.В. «Процессы и аппараты пищевых производств». М.,: Колос, 2008. с. 350.
- 3. Ченцова Л.И. «Процессы и аппараты пищевых производств», учеб. пособие \Л.Н. Ченцова, М.Н. Шайхудинова, Т.В. Борисова, КрасГАУ, Красноярск, 2004. с. 112.
- 4. Ченцова Л.И. «Процессы и аппараты пищевых производств. Массообменные процессы», учеб. пособие \Л.Н. Ченцова, М.Н. Шайхудинова. КрасГАУ, Красноярск, 2009. с. 163.

Дополнительная литература

- 1. Борисова Г.В. Основные свойства пищевого сырья, полуфабрикатов и продуктов. Справочное пособие. КрасГАУ, Красноярск, 2008. с. 980.
- 2. Левин Б.Д., Ченцова Л.И., Шайхутдинова М.Н., Ушанова В.М. Процессы и аппараты химических и биологических технологий. Учеб. пособие для студентов химических специальностей вузов / под общ. ред. д ра. хим. Наук С.М. Репяха. Красноярск: Сибирский государственный университет, 2002. с. 430.
- 3. Основные процессы и аппараты химической технологии: Посоие по проектированию / Г.С. Борисов, В.П. Брыков, Ю.И. Дытнерский и др. Под ред. Ю.И.Дытнерского, 2 е изд., перераб. и дополн. М.: Химия, 1991. с. 496.
- 4. Павлов К.Ф., Романков П.Г., Носков А.А. Примеры и задачи по курсу процессы и аппаратов химической технологии: Учебное пособие для вузов под ред. чл. корр. АН России П.Г. Романкова. 12- -е изд., стереотипное. Перепечатка с издания 1987 г. М.: ООО ТИД «Альянс», 2005. с. 576.

ПРОЦЕССЫ И АППАРАТЫ ПИЩЕВЫХ ПРОИЗВОДСТВ

ОПРЕДЕЛЕНИЕ ОСНОВНЫХ ХАРАКТЕРИСТИК ИЗМЕЛЬЧЕНИЯ СЫРЬЯ

Методические указания к выполнению Лабораторных и практических работ

Составители: Л.И. Ченцова, В.Н. Тепляшин, В.Н. Невзоров

Редактор