МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ДЕПАРТАМЕНТ НАУЧНО-ТЕХНОЛОГИЧЕСКОЙ ПОЛИТИКИ И ОБРАЗОВАНИЯ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ»

ЦПСС3

Кафедра физики и математики

 СОГЛАСОВАНО:
 УТВЕРЖДАЮ:

 Директор
 Ректор:

 Е.В. Шанина
 Н.И. Пыжикова

 "28" марта 2025 г.
 "28" марта 2025 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ «ОУП.06 Физика»

ФГОС СПО

по специальности 36.02.03 «Зоотехния»

ДОКУМЕНТ ПОДПИСАН УСИЛЕННОЙ КВАЛИФИЦИРОВАННОЙ ЭЛЕКТРОННОЙ ПОДПИСЬЮ

ВЫДАННОЙ: ФГБОУ ВО КРАСНОЯРСКИЙ ГАУ ВЛАДЕЛЕЦ: РЕКТОР ПЫЖИКОВА Н.И. ДЕЙСТВИТЕЛЕН: 15.05.2025 - 08.08.2026

Курс	<u>1</u>
Семестр	1,2
Форма обучения	очная
Квалификация выпускник	казоотехни
Нормативный срок обучен	ния 2г.10 м.

Красноярск, 2025

Составитель: Чичикова Татьяна Олеговна, преподаватель

(ФИО, ученая степень, ученое звание)

Программа разработана в соответствии с ФГОС СПО <u>по специальности</u> 36.02.03 «Зоотехния», №546 от 19.07.2023 г.

Программа обсуждена на заседании кафедры физики и математики

протокол №5 от «31» января 2024г.

Зав. кафедрой: Иванов В.И., к.ф.-м.н., доцент

у «31» января 2024г.

Лист согласования рабочей программы

Программа принята методической комиссией института прикладной биотехнологии и ветеринарной медицины

протокол № 7 «24» марта 2025 г.

Председатель методической комиссии

Турицына Е.Г., д-р. ветеринар. н., профессор

«24» марта 2025 г.

Заведующий выпускающей кафедры по специальности 36.02.03 "Зоотехния"

Лефлер Т.Ф., д-р. с.-х. н., профессор

«24» марта 2025г.

Оглавление

АННОТАЦИЯ5
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫОШИБКА! ЗАКЛАДКА НЕ ОПРЕДЕЛЕНА.
.1. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОСНОВНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ:ОШИБКА! ЗАКЛАДКА НЕ ОПРЕДЕ
.2. Цель и планируемые результаты освоения дисциплины:
.1. Объем учебной дисциплины и виды учебной работы9
.2. Тематический план и содержание учебной дисциплины9
. УСЛОВИЯ РЕАЛИЗАЦИИ УЧЕБНОЙ ДИСЦИПЛИНЫ <u>14</u>
.1. Для реализации программы учебной дисциплины должны быть предусмотрены ледующие специальные помещения14
.2. Информационное обеспечение реализации программы14
.2.1. Основные печатные издани14
.2.2. Основные электронные издания14
. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ14

КИЦАТОННА

Учебный предмет «Физика» изучается в общеобразовательном цикле основной образовательной программы среднего профессионального образования по специальности 36.02.03 «Зоотехния». Дисциплина реализуется в центре подготовки специалистов среднего звена кафедрой «Физика и математика».

Содержание дисциплины охватывает круг вопросов, связанных с изучением основных физических явлений и фундаментальных понятий, законов, теорий классической и квантовой физики, принципов работы современного оборудования и аппаратуры.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: практические занятия, лекции, самостоятельная работа и промежуточная аттестация.

Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости и промежуточный контроль в форме экзамена.

Общая трудоёмкость освоения дисциплины составляет 4.9 зачетные единицы, 178 часов. Программой дисциплины предусмотрены 80 часов практических занятия, 80 часов лекций, 6 часов самостоятельной работы и промежуточная аттестация 10 часа.

1 ОБЩАЯ ХАРАКТЕРИСТИКА РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ «ОУП.06 Физика»

1.1. Место дисциплины в структуре основной образовательной программы:

Учебная дисциплина «ОУП.06 Физика» является обязательной частью общепрофессионального цикла ПОП-П в соответствии с ФГОС СПО по специальности 36.02.03 «Зоотехния».

1.2. Цель и планируемые результаты освоения дисциплины:

Цели изучения дисциплины Физика. Физика создаёт универсальную базу для изучения общепрофессиональных и специальных дисциплин. Она даёт целостное представление о физических законах окружающего мира в их единстве и взаимосвязи, вооружает бакалавров необходимыми знаниями для решения научно-технических задач в теоретических и прикладных аспектах. Дисциплина «Физика» формирует у обучающего научное мировоззрение. Она предназначена для изучения современной физической картины мира, приобретения навыков экспериментального исследования, изучения теоретических методов анализа, обучение грамотному применению положений фундаментальной физики к научному анализу ситуаций, с которыми бакалавру придётся сталкиваться на производстве и создании новых технологий.

Задачами курса физики являются:

- изучение законов окружающего мира в их взаимосвязи;
- овладение фундаментальными принципами и методами решения научно-технических задач;
- формирование способности успешно работать в быстро развивающихся технике и технологиях, самостоятельно непрерывно приобретать новые знания, умения и навыки необходимые для успешной работы;
- применение основных физических теорий для решения современных и перспективных профессиональных задач;
- знакомство и использование физической аппаратуры в профессиональной деятельности.

2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

2.1. Объем учебной дисциплины и виды учебной работы

	Трудоемкость			
Вид учебной работы	час.	Г	по	
		семе	страм	
		№1	№ 2	
Общая трудоемкость дисциплины по учебному плану	178	68	110	
Аудиторные занятия	206			
в том числе:				
Лекции (Л)	80	34	46	
практические занятия (ПЗ)	126	34	46	
Самостоятельная работа (СРС)	6		6	
выполнение контрольной работы			2	
реферат			2	
Промежуточная аттестация	10		10	
Консультации	2		2	
Вид контроля:			Экзамен	

2.2. Тематический план и содержание учебной дисциплины

Наименование разделов и тем	Содержание учебного материала и формы организации деятельности обучающихся	Объем часов
1	2	3
Введение.	Физика и методы научного познания	2
Тема 1.1. Основы кинематики:	Теоретическое занятие (лекция): Физика-фундаментальная наука о природе. Роль эксперимента и теории в процессе познания природы. Моделирование физических явлений и процессов. Физические величины и способы их измерения. Понятие о физической картине мира. Погрешности измерений физических величин. Значение физики при освоении профессий СПО и специальностей СПО. Раздел 1. Механика Теоретическое занятие (лекция): 1. Механическое движение. Перемещение. Путь. Скорость. Равномерное прямолинейное движение. Уско-	6 3
	рение. 2. Равнопеременное прямолинейное движение. Свободное падение. Движение тела, брошенного под углом к горизонту. Равномерное движение по окружности.	3
	В том числе практических занятий и лаборатор- ных работ	16
	1. Решение задач по теме: Скорость. Равномерное прямолинейное движение. Ускорение.	6
	2. Решение задач по теме «Основы кинематики» с учётом профессиональной направленности	6
	3. Изучение законов кинематики и динамики поступательного движения на машине Атвуда	4
Тема № 1.2	Теоретическое занятие (лекция):	6
Основы динамики:	1 Основная задача динамики. Сила. Масса. Законы механики Ньютона. Закон всемирного тяготения.	6

	Первая космическая скорость. Вес. Невесомость. Силы упругости. Силы трения.	
	В том числе практических занятий и лаборатор- ных работ	10
	1. Решение задач по теме «Основы динамики и законы Ньютона»	5
	2. Решение задач по теме «Основы динамики и зако- ны Ньютона» с учётом профессиональной направлен- ности	5
Тема № 1.3. Законы со-		
хранения в механике.	1. Импульс материальной точки (тела). Закон сохранения импульса. Закон сохранения импульса. Реактивное движение. Работа силы. Работа потенциальных сил. Мощность. Энергия. Кинетическая энергия. Потенциальная энергия. Закон сохранения механической энергии. Применение законов сохранения.	6
	В том числе практических занятий и лаборатор- ных работ	16
	1. Решение задач по теме «Энергия. Кинетическая энергия. Потенциальная энергия. Закон сохранения механической энергии. Применение законов сохранения»	8
	2. Решение задач по теме «Законы сохранения в ме- ханике» с учётом профессиональной направленности	8
Раздел 2. М	олекулярная физика и термодинамика	
Тема № 2.1.	Теоретическое занятие (лекция):	12
Основы молекулярно- ки- нетической теории. Иде- альный газ.	1. Основные положения молекулярно-кинетической теории и их опытное обоснование. Броуновское движение. Идеальный газ.	4
	2. Температура газа. Термодинамическая шкала температур. Термометр. Давление газа. Основное уравнение молекулярно-кинетической теории идеального газа.	4
	3. Температура газа. Уравнение Менделеева- Клапейрона. Изопроцессы, их уравнения.	4
	В том числе практических занятий и лаборатор- ных работ	8
	1. Решение задач по теме: «Основы молекулярно- ки- нетической теории. Идеальный газ» с учётом про- фессиональной направленности	8

Тема № 2.2 Основы тер-	Теоретическое занятие (лекция):	2
модинамики.	1. Внутренняя энергия способы ее измерения. Виды и способы теплообмена. Количество теплоты. Первое начало термодинамики. Второе начало термодинамики. Уравнение теплового баланса	2
	В том числе практических занятий и лаборатор- ных работ	2
	1. Решение задач по теме: «Первый закон термодина- мики»	2
	Раздел 3. Электродинамика	
Гема № 3.1. Электриче-	Теоретическое занятие (лекция):	8
ское поле.	1. Электрический заряд. Электризация тел. Закон сохранения зарядов. Взаимодействия точечных зарядов. Закон Кулона. Электрическая постоянная. Электрическое поле и его напряженность. Линии напряженности электрического поля. Электроемкость. Единицы электроемкости.	8
	В том числе практических занятий и лаборатор- ных работ	16
	1.Решение задач по теме: «Электрическое поле. За- кон Кулона» с учётом профессиональной направлен- ности	8
	2. Решение задач по теме: «Линии напряженности электрического поля. Электроемкость. Единицы электроемкости»	8
	Теоретическое занятие (лекция):	4
	1. Постоянный электрический ток и его характеристики. Условия существования электрического тока. Закон Ома для участка цепи. Сопротивление проводника.	2
	2. Закон последовательного соединения проводников. Закон параллельного соединения проводников. Закон Ома для замкнутой цепи. Электродвижущая сила.	2
	В том числе практических занятий и лаборатор- ных работ	20
	1. Решение задач по теме: «Закон Ома для участка це- пи. Сопротивление проводника»	8
	2. Решение задач по теме: «Законы постоянного то- ка» с учётом профессиональной направленности	8

	3. Закон последовательного соединения проводников. Закон параллельного соединения проводников. Закон Ома для замкнутой цепи.	4
Тема № 3.3. Магнитное	Теоретическое занятие (лекция):	2
поле и электромагнит- ная индукция	Магнитное взаимодействие. Магнитное поле электрического тока. Графическое изображение магнитных полей. Электромагнитная индукция. Опыт Фарадея. Закон электромагнитной индукции.	2
	В том числе практических занятий и лаборатор- ных работ	2
	1. Решение задач по теме: «Магнитное поле и электромагнитная индукция»	2
P	Раздел 4. Колебания и волны	
Тема № 4.1. Механиче-	Теоретическое занятие (лекция):	2
ские колебания и волны	1. Колебательное движение. Гармонические колебания и их характеристики. Уравнение гармонического колебания. Превращение энергий при колебательных движениях. Свободные и вынужденные колебания. Механический резонанс, его учет в технике. Волны, их характеристики. Распространение колебаний в упругой среде. Звуковые волны	2
Тема № 4.2. Электромаг-	Теоретическое занятие (лекция):	4
нитные колебания и волны.	1. Свободные электромагнитные колебания. Превращение энергии в колебательном контуре. Вынужденные электрические колебания. Действующие значения тока и напряжения.	2
	2. Индуктивность и емкость в цепи переменного тока. Сопротивление в цепи переменного тока. Переменный ток. Закон Ома для участка цепи переменного тока	2
	В том числе практических занятий и лаборатор- ных работ	4
	1.Решение задач по теме «Электромагнитные колебания волны»	2
	2.Решени задач на переменный ток	2
	Раздел 5. Оптика	

Тема № 5.1. Природа	Теоретическое занятие (лекция):	6
света.	1. Электромагнитная природа света. Скорость света. Зависимость между длиной световой волны и частотой электромагнитных колебаний. Законы отражения света. Зеркальное и диффузное отражение. Закон преломления света.	2
	Физический смысл показателя преломления. Линзы и их виды. Основные линии в линзах	
	2. Глаз как оптическая система. Оптические приборы	2
	В том числе практических занятий и лаборатор- ных работ	4
	1. Решение задач: «Построение в линзах»	2
	2. Решение задач по теме «закон отражения, прелом- ления света»	2
Тема № 5.2. Волновые	Теоретическое занятие (лекция):	4
свойства света.	1. Интерференция света. Когерентность световых лучей. Интерференция в тонких пленках. Полосы равной толщины. Кольца Ньютона. Использование интерференции в науке и технике. Дифракция света. Дифракция на щели в параллельных лучах. Дифракционная решетка.	2
	2. Понятие о голографии. Поляризация света. Двойное лучепреломление. Поляроиды. Дисперсия света. Ультрафиолетовое и инфракрасное излучение. Рентгеновские лучи.	2
	В том числе практических занятий и лаборатор- ных работ	4
	1. Решение задач по теме «Волновые свойства света»	2
	3. Определение длины монохроматической световой волны с помощью дифракционной решетки	2
Разде	л 6. Элементы квантовой физики	
Тема № 6.1. Волновые	Теоретическое занятие (лекция):	4
свойства света.	1. Квантовая природа света. Строение атома. Модель Резерфорда, Бора. Уровни энергии в атоме. Излучение и поглощение энергии атомом. Квантовые постулаты Бора. Состав и размер атомного ядра. Состав атомных ядер. Ядерные реакции. Искусственная радиоактивность. Деление тяжелых ядер. Цепная ядерная реакция. Управляемая цепная реакция	4
	В том числе практических занятий и лаборатор- ных работ	4

	1. Сообщения на темы: «Ядерный реактор», «Получение радиоактивных изотопов и их применение», «Биологическое действие радиоактивных излучений»	2	
	2. Решение задач по теме «Уравнение альфа распада»	2	
Pa	Раздел 7. Эволюция Вселенной.		
Тема № 7.1. Строение и	Теоретическое занятие (лекция):	2	
развитие Вселенной	1. Наша звездная система – Галактика. Другие галактики. Бесконечность Вселенной. Строение и происхождение Галактик	2	
	В том числе практических занятий и лаборатор- ных работ	2	
	1. Прохождение тестовых заданий на тему «Галакти- ка. Другие галактики. Расширяющаяся Вселенная. Строение и происхождение Галактик»	2	
Промежуточная аттестация (экзамен)		2	
	Всего:	178	

3. УСЛОВИЯ РЕАЛИЗАЦИИ УЧЕБНОЙ ДИСЦИПЛИНЫ

3.1. Для реализации программы учебной дисциплины должны быть предусмотрены следующие специальные помещения:

Лекции и практические занятия проводятся в специальных аудиториях, оснащенных средствами мультимедиа. Лабораторные занятия проводятся в специализированных аудиториях-лабораториях «Механики, молекулярной физики, электричества и магнетизма», «Оптики и атомной физики» оснащенных соответствующими лабораторными установками.

Лаборатории оснащены необходимым для реализации программы учебной дисциплины оборудованием, приведенным в образовательной программы по данной специальности.

3.2. Информационное обеспечение реализации программы

Для реализации программы библиотечный фонд образовательной организации должен иметь печатные и/или электронные образовательные и информационные ресурсы, для использования в образовательном процессе. При формировании библиотечного фонда образовательной организацией выбирается не менее одного издания из перечисленных ниже печатных изданий и (или) электронных изданий в качестве основного, при этом список может быть дополнен новыми изданиями.

3.2.1. Основные печатные издания

- 1. Мякишев, Г. Я., Буховцев, Б. Б., Сотский, Н. Н. / Под ред. Парфентьевой Н.А. Физика. Учебник для 10 кл. М.: «Просвещение», 2019.-416 с.
- 2. Мякишев, Г. Я., Буховцев, Б. Б., Чаругин, В.М. / Под ред. Парфентьевой Н.А. Физика. Учебник для 11 кл. М.: «Просвещение», 2019. 399 с.
- 3. Рогачев, Н. М. Физика. Учебный курс для среднего профессионального образования / Н. М. Рогачев, О. А. Левченко. 2-е изд., стер. Санкт-Петербург :Лань, 2023. 312 с. ISBN

978-5-507-45581-2. — Текст : электронный // Лань :электронно-библиотечная система. — URL: https://e.lanbook.com/book/276449

3.2.2. Основные электронные издания

- 1. Рогачев, Н. М. Физика. Учебный курс для среднего профессионального образования / Н. М. Рогачев, О. А. Левченко. 2-е изд., стер. Санкт-Петербург : Лань, 2023. 312 с. ISBN 978-5-507-45581-2. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/276449
- 2. Калашников, Н. П. Физика: учебник и практикум для среднего профессионального образования / Н. П. Калашников, С. Е. Муравьев. 2-е изд., перераб. и доп. Москва : Издательство Юрайт, 2023. 496 с. (Профессиональное образование). ISBN 978-5-534-16205-9. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/530614
- 3. Васильев, А. А. Физика: учебное пособие для среднего профессионального образования / А. А. Васильев, В. Е. Федоров, Л. Д. Храмов. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2023. 211 с. (Профессиональное образование). ISBN 978-5-534-05702-7. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/514208

4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Результаты обучения	Критерии оценки	Методы оценки
понимание роли физики в научной картине мира, сформированость понимания закономерной связи и познаваемости явлений природы, роли физики в формировании культуры моделирования реальных явлений и процессов, представлений о роли эксперимента в физике и о выдающихся физических открытиях, о системообразующей роли физики в развитии естественных наук, техники и технологий, об эволюции физических знаний и их роли в целостной естественнонаучной картине мира, о вкладе российских и зарубежных ученыхфизиков в развитие науки, объяснение процессов окружающего мира, развитие техники и технологий;	Индивидуальный ответ; устный опрос на лекциях; проверка выполнения практических работ; проверка выполнения лабораторных заданий	Устный опрос, тестирование, Экзамен

уверенное владение основами Индивидуальный ответ; уст-Устный опрос, тестирование, Экзамен ный опрос на лекциях; пропонятийного аппарата и символичеверка выполнения практического языка физики и использование ских работ; проверка выполих для решения учебных и практиченения лабораторных заданий ских задач, умение характеризовать свойства тел, физические явления и процессы, используя фундаментальные и эмпирические законы: (закон Паскаля, закон Архимеда, правило рычага, золотое правило механики, законы изменения и сохранения механической энергии, уравнение теплового баланса, закон сохранения импульса, закон сохранения электрического заряда, принцип относительности Галилея, принцип суперпозиции сил, законы Ньютона, закон всемирного тяготения, теорема о кинетической энергии, закон Гука, закон Бернулли, основные положения молекулярно-кинетической теории строения вещества, закон Кулона, принцип суперпозиции электрических полей, закон Ома для участка цепи, правила Кирхгофа, закон Джоуля-Ленца, законы прямолинейного распространения, отражения и преломления света, формула тонкой линзы); умение описывать изученные свойства тел и физиче-

ские явления, используя физические

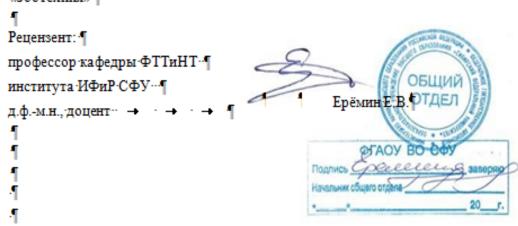
величины

РЕЦЕНЗИЯ (

на рабочую программу дисциплины «Физика» в рамках ФГОС-СПО-поспециальности-36.02.03 «Зоотехния»¶

4

Программа разработана на кафедрефизики и математики ИИСиЭ ФГБОУ-ВО Красноярский ГАУ. ¶


Представленная рабочая программа учебной дисциплины «Физика» для обучающихся очной формы обучения специальности 36.02.03 «Зоотехния» соответствует Федеральному государственному образовательному стандарту среднего профессионального образования (ФГОС-СПО). ¶

В-рабочей-программе-указаны-требования-к-дисциплине, место и рольдисциплины-в учебном процессе, цели-и-задачи, компетенции, формируемые врезультате-освоения-дисциплины. ¶

Далее, в соответствии с требованием ФГОС СПО, изложено содержание дисциплины, показана трудоемкость модулей и модульных единиц; виды занятий: пекции, практические занятия и самостоятельная работа построены таким образом, что позволяет реализовать основные требования ФГОС СПО и обеспечить обучающимся прочные знания и умения, рассматриваемые сквозь призму общекультурных компетенций. ¶

Учебно-методическое и информационное обеспечение дисциплины включает основную, дополнительную литературу, методические разработки преподавателей кафедрыфизики и математики Института инженерных систем и энергетики. ¶

В целом данная рабочая программа может быть рекомендована в качестве Рабочей программы для изучения дисциплины «Физика» обучающимися Института прикладной биотехнологии и ветеринарной медицины 36.02.03 «Зоотехния» ¶

