Министерство сельского хозяйства Российской Федерации ФГБОУ ВПО «Красноярский государственный аграрный университет»

С.Ю. Журавлев

надежность технических систем

Рецензент

В.А. Терсков д.т.н., профессор кафедры математики и информатики КрИЖТ филиала ИрГУПС

Журавлев С.Ю.

Надежность технических систем: практикум / С.Ю. Журавлев; Краснояр. гос. аграр. ун-т.- Красноярск, 2013. — 89 с.

Предназначено для студентов, обучающихся по направлению 110800.62 «Агроинженерия», профили: «Технические системы в агробизнесе», «Технический сервис в агропромышленном комплексе»

Печатается по решению редакционно-издательского совета Красноярского государственного аграрного университета

- © Журавлев С.Ю., 2013
- © Красноярский государственный аграрный университет, 2013

Оглавление

ВВЕДЕНИЕ	4
ПРАКТИЧЕСКАЯ РАБОТА 1	
ПРАКТИЧЕСКАЯ РАБОТА 2	16
ПРАКТИЧЕСКАЯ РАБОТА 3	
ПРАКТИЧЕСКАЯ РАБОТА 4	28
ПРАКТИЧЕСКАЯ РАБОТА 5	32
ПРАКТИЧЕСКАЯ РАБОТА 6	46
ПРАКТИЧЕСКАЯ РАБОТА 7	63
ПРАКТИЧЕСКАЯ РАБОТА 8	69
ПРАКТИЧЕСКАЯ РАБОТА 9	78
БИБЛИОГРАФИЧЕСКИЙ СПИСОК	86

ВВЕДЕНИЕ

Наука о надежности техники изучает закономерности изменения показателей работоспособности изделий с течением времени, а также физическую природу отказов, и на этом основании разрабатывает методы, обеспечивающие с наименьшей затратой времени и средств необходимую долговечность и безотказность работы машин. Надежность машины включает в себя четыре свойства — долговечность, безотказность, ремонтопригодность и сохраняемость, каждое из которых оценивается своими единичными или комплексными показателями.

Так как показатели надежности носят случайный, стохастический (беспорядочный) характер — определение их базируется на теории вероятности и математической статистики. Оценка надежности объектов при помощи математических методов на основании обобщения накопления статистической информации об их работе в реальных условиях эксплуатации позволяет выявить вероятностные закономерности и соотношения между случайными факторами, в различной степени влияющими на показатели надежности машин.

Цель настоящего практикума — ознакомить студентов с методикой определения количественных показателей надежности машин на основе обработки опытной информации об их работе.

Практикум состоит из девяти практических работ.

По каждой практической работе студент оформляет отчет в виде пояснительной записки.

ПРАКТИЧЕСКАЯ РАБОТА №1

ОПРЕДЕЛЕНИЕ МИНИМАЛЬНОГО ЧИСЛА ОБЪЕКТОВ НАБЛЮДЕНИЙ ДЛЯ ПОЛУЧЕНИЯ ДОСТОВЕРНОЙ ИНФОРМАЦИИ О НАДЕЖНОСТИ МАШИН

Цель работы:

Освоить основные методы определения минимального количества объектов наблюдений и определить необходимое количество объектов наблюдений для получения достоверной информации о надежности машин.

Время выполнения работы – 4 часа.

Порядок выполнения работы:

- 1. Кратко познакомиться с основными методами расчета минимального числа объектов наблюдений (10 минут).
- 2. На основе исходной информации о надежности машин (приложение А данной работы) произвести первичную статистическую обработку (60 мин.).
- 3. Определить необходимое количество объектов наблюдений с помощью параметрических методов (40 мин.).
- 4. Определить необходимое количество объектов наблюдений с помощью непараметрических методов (30 мин.).

1. Основные методы расчета минимального числа объектов наблюдений

Основным источником информации о надежности машин, их деталей и узлов является проведение специальных наблюдений в условиях эксплуатации. При этом фиксируется наработка, время возникновения отказов и время восстановления работоспособности. Кроме того, важно знать необходимое минимальное количество объектов наблюдений для получения достоверной информации о надежности машин.

Методы расчета минимального числа объектов наблюдений могут быть в соответствии с ГОСТ 17510-94: параметрическими (при известном виде закона распределения исследуемой случайной величины) и непараметрическими (когда вид закона распределения неизвестен).

2. Обработка первичной информации

Обработка первичной информации о надежности машин производится в следующем порядке.

В соответствии с полученным заданием, где первичная статистическая информация представлена в виде вариационного ряда, составить статистический ряд опытной информации и занести в таблицу 1.1.

Интервал	1,02,0	2,03,0	3,04,0	4,05,0	5,06,0	6,07,0
(тыс.мото-ч)						
Частота, m_i	5	10	15	10	5	0
Опытная веро-						
ятность P_i	0,05	0,09	0,45	0,35	0,05	
$\sum_{i=1}^{n} Pi$	0,05	0,14	0,59	0,94	0,99	

Таблица 1.1 – Статистический ряд опытной информации

Число интервалов статистического ряда n определяется по формуле

$$n = \frac{k - t}{A} \tag{1.1}$$

где t_k — конечная точка информации;

 $t_{\scriptscriptstyle CM}$ — величина смещения или расстояние от нуля до первой точки информации;

A — цена интервала.

Таблица 1.1 состоит из четырех строк:

- в первой строке указывают границы интервалов;
- во второй строке количество случаев (частоту m_i) в каждом интервале;
- в третьей строке опытную вероятность появления показателя надежности в каждом интервале, Pi;
 - в четвертой строке накопленную опытную вероятность, $\sum\limits_{1}^{n}Pi$.

Опытная вероятность (Рі) определяется по формуле

$$Pi = \frac{m_i}{N} \,, \tag{1.2}$$

где m_i — число случаев появления показателей надежности в каждом интервале;

N – повторность информации.

При наличии статистического ряда среднее значение показателя надежности \overline{t} определяется по формуле

$$\overline{t} = \sum_{i=1}^{n} t_{ic} P_i,$$
(1.3)

где n — количество интервалов в статистическом ряду;

 t_{ic} – значение середины i-го интервала;

 P_i – опытная вероятность i-го интервала.

Среднеквадратическое отклонение σ определяется по уравнению:

$$\sigma = \sqrt{\sum_{1}^{n} \left(t_{ic} - \overline{t}\right)^{2} P_{i}}, \qquad (1.4)$$

Далее определяем коэффициент вариации *v* по формуле

$$v = \frac{\sigma}{t},\tag{1.5}$$

где σ – среднеквадратическое отклонение;

 \bar{t} — среднее значение показателя надежности.

По величине коэффициента вариации определяют теоретический закон распределения случайной величины.

В случае если $v \le 0.33$ — выбирается закон нормального распределения;

когда v > 0.33 – выбирается закон Вейбулла.

3. Параметрические методы

Закон распределения Вейбулла

Если функция плотности вероятности при параметре распределения Вейбулла b задана в виде

$$f(t) = b\lambda t^{b-1} \ell^{-\lambda \tau^u} \text{ при } \tau \ge 0, \tag{1.6}$$

то число объектов наблюдений N определяют в зависимости от относительной ошибки δ , среднего значения \bar{t} исследуемой случайной величины с доверительной вероятностью α и ожидаемой величины коэффициента вариации ν , который ранее определен по выражению (1.5).

Относительная ошибка δ определяется по формуле

$$\delta = \frac{tb - \bar{t}}{\bar{t}},\tag{1.7}$$

где \vec{t} — среднее значение случайной величины, опреленное по формуле (1.3);

tb – верхняя доверительная граница.

Для закона Вейбулла

$$tb = \left(-cb \right) \sqrt[b]{\gamma_1} + cb \,. \tag{1.8}$$

Для нормального закона

$$tb = \vec{t} + t_{\alpha} \frac{\sigma}{\sqrt{N}}, \tag{1.9}$$

где σ — среднеквадратическое отклонение [см. формулу (1.4)]; t_{α} , b, Cb, γ_1 - коэффициенты, которые определяют по приложению Б данной работы, исходя из значений доверительной вероятности α (α = 0,8; 0,9; 0,95; 0,99) и отношения N/α .

Для определения числа объектов N используют таблицу B.1 приложения B данной работы, если рассматривается закон Вейбулла.

Нормальный закон распределения

Если функция плотности вероятности задана в виде

$$f(t) = \frac{1}{\sigma\sqrt{2\pi}} \ell^{\frac{-(t-\bar{t})^2}{2\sigma^2}},$$
 (1.10)

то число объектов наблюдений N определяют в зависимости от относительной ошибки δ среднего значения \bar{t} с доверительной вероятностью α и ожидаемой величины коэффициента вариации ν .

Относительную ошибку определяют по формуле (1.7).

Выбирают доверительную вероятность α .

Величина ν известна из выражения (1.5).

Находят отношение δ/v .

В таблице В.2 приложения В данной работы по отношению δ/v и выбранной доверительной вероятности находят минимальное число объектов наблюдений N.

4. Непараметрические методы

При неизвестном виде закона распределения случайной величины минимальное число объектов наблюдений N для проверки требуемой вероятности P(t) безотказной работы в течение некоторого времени t (доремонтный ресурс) с доверительной вероятностью α задается из условия отсутствия отказов за время t.

Выбирают доверительную вероятность α .

Задаются требуемой минимальной величиной вероятности безотказной работы P(t). P(t)=0,5; 0,8; 0,9; 0,95; 0,98; 0,99; 0,995.

По данным приложения Γ данной работы для заданных значений P(t) и α находят соответствующее минимальное число объектов наблюдений N.

Содержание отчета

- 1. Титульный лист.
- 2. Цель и задачи работы.
- 3. Результаты выполнения работы.
- 4.Ответы на контрольные вопросы.

Защитить отчет у преподавателя.

Контрольные вопросы

- 1. Какие методы определения минимального числа объектов наблюдений известны вам?
- 2. Чем отличают параметрические методы от непараметрических?
- 3. По каким параметрам выбирается тот или другой метод определения минимального числа объектов наблюдений?

ПРИЛОЖЕНИЕ А

Информация по доремонтному ресурсу двигателей Д-240 (вариант 1) и СМД-66 (вариант 2) (обязательное)

No	Доремонти	ный ресурс	No॒	Доремонтн	ый ресурс
двигате-	(мото-	-часы)	двигателя	(мото-	часы)
ЛЯ	Вариант 1	Вариант 2		Вариант 1	Вариант
					2
1	2100	2150	23	3550	3550
2	2200	2250	24	3500	3550
3	2300	2300	25	3620	3680
4	2350	2600	26	3650	3690
5	2720	2600	27	3650	3700
6	2900	2610	28	3700	3700
7	3020	2650	29	3750	3710
8	3060	2700	30	3750	3750
9	3060	2720	31	3800	3800
10	3180	2750	32	3800	3850
11	3200	2750	33	3810	3850
12	3210	2800	34	3820	3900
13	3210	2810	35	3850	3910
14	3260	2850	36	3900	4000
15	3300	2850	37	3910	4200
16	3300	2950	38	4150	4250
17	3300	3060	39	4200	4500
18	3420	3060	40	4350	4600
19	3460	3230	41	4500	4900
20	3480	3310	42	5000	5100
21	3500	3450	43	5100	5250
22	3520	3500	44	5200	5540
			45	5600	6100

ПРИЛОЖЕНИЕ Б

Коэффициенты t_{α} , γ_1 и γ_3 для доверительных границ (обязательное)

α		0,80			0,90		0,95			0,99		
N/α	t_{α}	γ_{I}	γ3	t_{α}	γ_I	γ3	t_{α}	γ_{I}	γ3	t_{α}	γ_I	γ3
3	1,89	1,95	0,70	2,92	2,73	0,57	4,30	3,66	0,48	9,92	6,88	0,36
4	1,84	1,74	0,73	2,35	2,29	0,60	3,18	2,93	0,52	5,84	4,85	0,40
5	1,53	1,62	0,75	2,13	2,05	0,62	2,78	2,54	0,55	4,60	3,91	0,43
6	1,48	1,54	0,76	2,02	1,30	0,65	2,57	2,29	0,57	4,03	3,36	0,46
7	1,44	1,48	0,77	1,94	1,80	0,67	2,45	2,13	0,59	3,71	3,00	0,48
8	1,42	1,43	0,78	1,90	1,72	0,63	2,36	2,01	0,61	3,50	2,75	0,50
9	1,40	1,40	0,79	1,86	1,68	0,69	2,31	1,91	0,63	3,36	2,56	0,52
10	1,38	1,37	0,80	1,83	1,61	0,70	2,26	1,83	0,64	3,25	2,42	0,53
11	1,37	1,35	0,80	1,81	1,57	0,70	2,23	1,78	0,64	3,17	2,31	0,54
12	1,36	1,33	0,81	1,80	1,53	0,71	2,20	1,73	0,65	3,11	2,21	0,56
13	1,36	1,31	0,81	1,78	1,50	0,73	2,18	1,69	0,66	3,06	2,13	0,57
14	1,35	1,23	0,83	1,77	1,48	0,74	2,16	1,65	0,67	3,01	2,06	0,58
15	1,34	1,28	0,83	1,76	1,46	0,74	2,15	1,62	0,68	2,98	2,01	0,59
20	1,33	1,24	0,85	1,73	1,37	0,77	2,09	1,51	0,72	2,85	1,81	0,63
25	1,32	1,21	0,86	1,71	1,33	0,79	2,06	1,44	0,74	2,80	1,68	0,66
30	1,31	1,18	0,87	1,70	1,29	0,80	2,04	1,39	0,76	2,75	1,60	0,68
40	1,30	1,16	0,88	1,68	1,24	0,83	0,02	1,32	0,78	2,71	1,50	0,71
50	1,30	1,14	0,89	1,68	1,21	0,84	0,01	1,28	0,80	2,68	1,43	0,74
60	1,30	1,12	0,90	1,67	1,19	0,86	2,00	1,25	0,82	2,66	1,38	0,76
80	1,29	1,10	0,91	1,66	1,16	0,87	1,99	1,21	0,84	2,64	1,32	0,78
100	1,29	1,09	0,92	1,66	1,14	0,88	1,98	1,19	0,86	2,63	1,28	0,80

ПРИЛОЖЕНИЕ В

Число объектов наблюдений (обязательное)

Таблица В.1 — Число объектов наблюдений N для закона Вейбулла

Относи-							Коэфф	ициент	вариал	ши v					
тельная ошибка	0,4	0,45	0,50	0,55	0,60	0,70	0,75	0,80	0,85	0,90	0,95	1,0	1,1	1,2	1,5
							$\alpha = 0$),80							
0,05	50	60	70	90	108	140	160	180	225	275	285	300	350	500	700
0,10	4	18	23	27	31	46	51	56	81	67	74	80	100	120	150
0,15	7	9	11	13	16	22	25	28	30	32	40	45	52	75	80
0,20	5	6	8	9	10	14	15	18	20	22	22	27	30	40	54
							$\alpha = 0$),90							
0,05	100	152	180	220	265	360	420	460	510	550	570	600	900	970	>1000
0,10	30	37	46	57	70	92	100	125	150	167	185	200	250	300	400
0,15	15	19	24	28	34	45	51	59	67	73	81	90	115	142	200
0,20	10	12	15	19	20	29	32	37	40	45	50	55	65	75	117
							$\alpha = 0$),95							
0,05	172	218	270	340	430	560	640	720	820	900	940	1000	>1000	>1000	>1000
0,10	47	59	74	93	115	115	178	208	227	242	270	300	400	500	600
0,15	24	30	37	45	53	72	82	98	112	120	139	150	185	220	300
0,20	15	19	23	29	33	45	50	57	65	72	79	90	135	140	200
	$\alpha = 0.99$														
0,05	350	438	525	640	867	560	1000	1000	1000	>1000	>1000	>1000	>1000	>1000	>1000
0,10	94	122	148	180	232	155	360	400	448	483	540	600	800	1000	>1000
0,15	46	58	75	88	109	72	174	105	224	250	276	300	350	430	600
0,20	23	36	45	53	66	45	100	118	131	144	163	184	210	220	400

Таблица В.2 — Значения $\frac{\delta}{\nu}$ в зависимости от N и α .

N α 0,80 0,90 0,95 0,99 2 0,973 2,176 4,465 22,501 3 0,613 1,089 1,686 4,021 4 0,489 0,819 1,177 2,271 5 0,421 0,686 0,953 1,676 6 0,376 0,603 0,823 1,374 7 0,342 0,544 0,734 1,188 8 0,317 0,500 0,670 1,060 9 0,296 0,466 0,620 0,965 10 0,279 0,437 0,580 0,892 11 0,265 0,414 0,546 0,833 12 0,253 0,393 0,518 0,785 13 0,242 0,376 0,494 0,744 14 0,233 0,361 0,473 0,708 15 0,224 0,347 0,455 0,678 16 0,217	N	<u> </u>	~		
2 0,973 2,176 4,465 22,501 3 0,613 1,089 1,686 4,021 4 0,489 0,819 1,177 2,271 5 0,421 0,686 0,953 1,676 6 0,376 0,603 0,823 1,374 7 0,342 0,544 0,734 1,188 8 0,317 0,500 0,670 1,060 9 0,296 0,466 0,620 0,965 10 0,279 0,437 0,580 0,892 11 0,265 0,414 0,546 0,833 12 0,253 0,393 0,518 0,785 13 0,242 0,376 0,494 0,744 14 0,233 0,361 0,473 0,708 15 0,224 0,347 0,455 0,678 16 0,217 0,335 0,438 0,651 17 0,210 0,324 <td< td=""><td>I V</td><td>0.80</td><td></td><td>0.05</td><td>0.00</td></td<>	I V	0.80		0.05	0.00
3 0,613 1,089 1,686 4,021 4 0,489 0,819 1,177 2,271 5 0,421 0,686 0,953 1,676 6 0,376 0,603 0,823 1,374 7 0,342 0,544 0,734 1,188 8 0,317 0,500 0,670 1,060 9 0,296 0,466 0,620 0,965 10 0,279 0,437 0,580 0,892 11 0,265 0,414 0,546 0,833 12 0,253 0,393 0,518 0,785 13 0,242 0,376 0,494 0,744 14 0,233 0,361 0,473 0,708 15 0,224 0,347 0,455 0,678 16 0,217 0,335 0,438 0,651 17 0,210 0,324 0,423 0,626 18 0,203 0,315 <td< td=""><td>2</td><td>·</td><td>·</td><td></td><td>· · ·</td></td<>	2	·	·		· · ·
4 0,489 0,819 1,177 2,271 5 0,421 0,686 0,953 1,676 6 0,376 0,603 0,823 1,374 7 0,342 0,544 0,734 1,188 8 0,317 0,500 0,670 1,060 9 0,296 0,466 0,620 0,965 10 0,279 0,437 0,580 0,892 11 0,265 0,414 0,546 0,833 12 0,253 0,393 0,518 0,785 13 0,242 0,376 0,494 0,744 14 0,233 0,361 0,473 0,708 15 0,224 0,347 0,455 0,678 16 0,217 0,335 0,438 0,651 17 0,210 0,324 0,423 0,626 18 0,203 0,315 0,410 0,605 19 0,198 0,305 <t< td=""><td></td><td>,</td><td></td><td>·</td><td></td></t<>		,		·	
5 0,421 0,686 0,953 1,676 6 0,376 0,603 0,823 1,374 7 0,342 0,544 0,734 1,188 8 0,317 0,500 0,670 1,060 9 0,296 0,466 0,620 0,965 10 0,279 0,437 0,580 0,892 11 0,265 0,414 0,546 0,833 12 0,253 0,393 0,518 0,785 13 0,242 0,376 0,494 0,744 14 0,233 0,361 0,473 0,708 15 0,224 0,347 0,455 0,678 16 0,217 0,335 0,438 0,651 17 0,210 0,324 0,423 0,626 18 0,203 0,315 0,410 0,605 19 0,198 0,305 0,398 0,585 20 0,193 0,297 <		·	•		·
6 0,376 0,603 0,823 1,374 7 0,342 0,544 0,734 1,188 8 0,317 0,500 0,670 1,060 9 0,296 0,466 0,620 0,965 10 0,279 0,437 0,580 0,892 11 0,265 0,414 0,546 0,833 12 0,253 0,393 0,518 0,785 13 0,242 0,376 0,494 0,744 14 0,233 0,361 0,473 0,708 15 0,224 0,347 0,455 0,678 16 0,217 0,335 0,438 0,651 17 0,210 0,324 0,423 0,626 18 0,203 0,315 0,410 0,605 19 0,198 0,305 0,398 0,585 20 0,193 0,297 0,387 0,568 21 0,188 0,289		,	,	·	
7 0,342 0,544 0,734 1,188 8 0,317 0,500 0,670 1,060 9 0,296 0,466 0,620 0,965 10 0,279 0,437 0,580 0,892 11 0,265 0,414 0,546 0,833 12 0,253 0,393 0,518 0,785 13 0,242 0,376 0,494 0,744 14 0,233 0,361 0,473 0,708 15 0,224 0,347 0,455 0,678 16 0,217 0,335 0,438 0,651 17 0,210 0,324 0,423 0,626 18 0,203 0,315 0,410 0,605 19 0,198 0,305 0,398 0,585 20 0,193 0,297 0,387 0,568 21 0,188 0,289 0,376 0,552 22 0,183 0,282		·	•	· ·	·
8 0,317 0,500 0,670 1,060 9 0,296 0,466 0,620 0,965 10 0,279 0,437 0,580 0,892 11 0,265 0,414 0,546 0,833 12 0,253 0,393 0,518 0,785 13 0,242 0,376 0,494 0,744 14 0,233 0,361 0,473 0,708 15 0,224 0,347 0,455 0,678 16 0,217 0,335 0,438 0,651 17 0,210 0,324 0,423 0,626 18 0,203 0,315 0,410 0,605 19 0,198 0,305 0,398 0,585 20 0,193 0,297 0,387 0,568 21 0,188 0,289 0,376 0,552 22 0,183 0,282 0,367 0,537 23 0,179 0,275					·
9 0,296 0,466 0,620 0,965 10 0,279 0,437 0,580 0,892 11 0,265 0,414 0,546 0,833 12 0,253 0,393 0,518 0,785 13 0,242 0,376 0,494 0,744 14 0,233 0,361 0,473 0,708 15 0,224 0,347 0,455 0,678 16 0,217 0,335 0,438 0,651 17 0,210 0,324 0,423 0,626 18 0,203 0,315 0,410 0,605 19 0,198 0,305 0,398 0,585 20 0,193 0,297 0,387 0,568 21 0,188 0,289 0,376 0,552 22 0,183 0,282 0,367 0,537 23 0,179 0,275 0,358 0,523 24 0,175 0,269		,	,	·	
10 0,279 0,437 0,580 0,892 11 0,265 0,414 0,546 0,833 12 0,253 0,393 0,518 0,785 13 0,242 0,376 0,494 0,744 14 0,233 0,361 0,473 0,708 15 0,224 0,347 0,455 0,678 16 0,217 0,335 0,438 0,651 17 0,210 0,324 0,423 0,626 18 0,203 0,315 0,410 0,605 19 0,198 0,305 0,398 0,585 20 0,193 0,297 0,387 0,568 21 0,188 0,289 0,376 0,552 22 0,183 0,282 0,367 0,537 23 0,179 0,275 0,358 0,523 24 0,175 0,269 0,350 0,510 25 0,171 0,264		·	•	·	·
11 0,265 0,414 0,546 0,833 12 0,253 0,393 0,518 0,785 13 0,242 0,376 0,494 0,744 14 0,233 0,361 0,473 0,708 15 0,224 0,347 0,455 0,678 16 0,217 0,335 0,438 0,651 17 0,210 0,324 0,423 0,626 18 0,203 0,315 0,410 0,605 19 0,198 0,305 0,398 0,585 20 0,193 0,297 0,387 0,568 21 0,188 0,289 0,376 0,552 22 0,183 0,282 0,367 0,537 23 0,179 0,275 0,358 0,523 24 0,175 0,269 0,350 0,510 25 0,171 0,264 0,342 0,498 26 0,168 0,258		,	,	·	·
12 0,253 0,393 0,518 0,785 13 0,242 0,376 0,494 0,744 14 0,233 0,361 0,473 0,708 15 0,224 0,347 0,455 0,678 16 0,217 0,335 0,438 0,651 17 0,210 0,324 0,423 0,626 18 0,203 0,315 0,410 0,605 19 0,198 0,305 0,398 0,585 20 0,193 0,297 0,387 0,568 21 0,188 0,289 0,376 0,552 22 0,183 0,282 0,367 0,537 23 0,179 0,275 0,358 0,523 24 0,175 0,269 0,350 0,510 25 0,171 0,264 0,342 0,498 26 0,168 0,258 0,335 0,487 27 0,165 0,253			,	·	,
13 0,242 0,376 0,494 0,744 14 0,233 0,361 0,473 0,708 15 0,224 0,347 0,455 0,678 16 0,217 0,335 0,438 0,651 17 0,210 0,324 0,423 0,626 18 0,203 0,315 0,410 0,605 19 0,198 0,305 0,398 0,585 20 0,193 0,297 0,387 0,568 21 0,188 0,289 0,376 0,552 22 0,183 0,282 0,367 0,537 23 0,179 0,275 0,358 0,523 24 0,175 0,269 0,350 0,510 25 0,171 0,264 0,342 0,498 26 0,168 0,258 0,335 0,487 27 0,165 0,253 0,328 0,477 28 0,162 0,248		0,265	0,414	0,546	0,833
14 0,233 0,361 0,473 0,708 15 0,224 0,347 0,455 0,678 16 0,217 0,335 0,438 0,651 17 0,210 0,324 0,423 0,626 18 0,203 0,315 0,410 0,605 19 0,198 0,305 0,398 0,585 20 0,193 0,297 0,387 0,568 21 0,188 0,289 0,376 0,552 22 0,183 0,282 0,367 0,537 23 0,179 0,275 0,358 0,523 24 0,175 0,269 0,350 0,510 25 0,171 0,264 0,342 0,498 26 0,168 0,258 0,335 0,487 27 0,165 0,253 0,328 0,477 28 0,162 0,248 0,322 0,467 29 0,159 0,244		0,253	0,393	0,518	0,785
15 0,224 0,347 0,455 0,678 16 0,217 0,335 0,438 0,651 17 0,210 0,324 0,423 0,626 18 0,203 0,315 0,410 0,605 19 0,198 0,305 0,398 0,585 20 0,193 0,297 0,387 0,568 21 0,188 0,289 0,376 0,552 22 0,183 0,282 0,367 0,537 23 0,179 0,275 0,358 0,523 24 0,175 0,269 0,350 0,510 25 0,171 0,264 0,342 0,498 26 0,168 0,258 0,335 0,487 27 0,165 0,253 0,328 0,477 28 0,162 0,248 0,322 0,467 29 0,159 0,244 0,316 0,458 30 0,156 0,239	13	0,242	0,376	0,494	0,744
16 0,217 0,335 0,438 0,651 17 0,210 0,324 0,423 0,626 18 0,203 0,315 0,410 0,605 19 0,198 0,305 0,398 0,585 20 0,193 0,297 0,387 0,568 21 0,188 0,289 0,376 0,552 22 0,183 0,282 0,367 0,537 23 0,179 0,275 0,358 0,523 24 0,175 0,269 0,350 0,510 25 0,171 0,264 0,342 0,498 26 0,168 0,258 0,335 0,487 27 0,165 0,253 0,328 0,477 28 0,162 0,248 0,322 0,467 29 0,159 0,244 0,316 0,458 30 0,156 0,239 0,310 0,449 31 0,153 0,235	14	0,233	0,361	0,473	0,708
17 0,210 0,324 0,423 0,626 18 0,203 0,315 0,410 0,605 19 0,198 0,305 0,398 0,585 20 0,193 0,297 0,387 0,568 21 0,188 0,289 0,376 0,552 22 0,183 0,282 0,367 0,537 23 0,179 0,275 0,358 0,523 24 0,175 0,269 0,350 0,510 25 0,171 0,264 0,342 0,498 26 0,168 0,258 0,335 0,487 27 0,165 0,253 0,328 0,477 28 0,162 0,248 0,322 0,467 29 0,159 0,244 0,316 0,458 30 0,156 0,239 0,310 0,449 31 0,153 0,235 0,305 0,441 41 0,133 0,203	15	0,224	0,347	0,455	0,678
18 0,203 0,315 0,410 0,605 19 0,198 0,305 0,398 0,585 20 0,193 0,297 0,387 0,568 21 0,188 0,289 0,376 0,552 22 0,183 0,282 0,367 0,537 23 0,179 0,275 0,358 0,523 24 0,175 0,269 0,350 0,510 25 0,171 0,264 0,342 0,498 26 0,168 0,258 0,335 0,487 27 0,165 0,253 0,328 0,477 28 0,162 0,248 0,322 0,467 29 0,159 0,244 0,316 0,458 30 0,156 0,239 0,310 0,449 31 0,153 0,235 0,305 0,441 41 0,133 0,203 0,263 0,378 61 0,109 0,166	16	0,217	0,335	0,438	0,651
19 0,198 0,305 0,398 0,585 20 0,193 0,297 0,387 0,568 21 0,188 0,289 0,376 0,552 22 0,183 0,282 0,367 0,537 23 0,179 0,275 0,358 0,523 24 0,175 0,269 0,350 0,510 25 0,171 0,264 0,342 0,498 26 0,168 0,258 0,335 0,487 27 0,165 0,253 0,328 0,477 28 0,162 0,248 0,322 0,467 29 0,159 0,244 0,316 0,458 30 0,156 0,239 0,310 0,449 31 0,153 0,235 0,305 0,441 41 0,133 0,203 0,263 0,378 61 0,109 0,166 0,214 0,306 121 0,077 0,117	17	0,210	0,324	0,423	0,626
20 0,193 0,297 0,387 0,568 21 0,188 0,289 0,376 0,552 22 0,183 0,282 0,367 0,537 23 0,179 0,275 0,358 0,523 24 0,175 0,269 0,350 0,510 25 0,171 0,264 0,342 0,498 26 0,168 0,258 0,335 0,487 27 0,165 0,253 0,328 0,477 28 0,162 0,248 0,322 0,467 29 0,159 0,244 0,316 0,458 30 0,156 0,239 0,310 0,449 31 0,153 0,235 0,305 0,441 41 0,133 0,203 0,263 0,378 61 0,109 0,166 0,214 0,306 121 0,077 0,117 0,151 0,214	18	0,203	0,315	0,410	0,605
21 0,188 0,289 0,376 0,552 22 0,183 0,282 0,367 0,537 23 0,179 0,275 0,358 0,523 24 0,175 0,269 0,350 0,510 25 0,171 0,264 0,342 0,498 26 0,168 0,258 0,335 0,487 27 0,165 0,253 0,328 0,477 28 0,162 0,248 0,322 0,467 29 0,159 0,244 0,316 0,458 30 0,156 0,239 0,310 0,449 31 0,153 0,235 0,305 0,441 41 0,133 0,203 0,263 0,378 61 0,109 0,166 0,214 0,306 121 0,077 0,117 0,151 0,214	19	0,198	0,305	0,398	0,585
22 0,183 0,282 0,367 0,537 23 0,179 0,275 0,358 0,523 24 0,175 0,269 0,350 0,510 25 0,171 0,264 0,342 0,498 26 0,168 0,258 0,335 0,487 27 0,165 0,253 0,328 0,477 28 0,162 0,248 0,322 0,467 29 0,159 0,244 0,316 0,458 30 0,156 0,239 0,310 0,449 31 0,153 0,235 0,305 0,441 41 0,133 0,203 0,263 0,378 61 0,109 0,166 0,214 0,306 121 0,077 0,117 0,151 0,214	20	0,193	0,297	0,387	0,568
23 0,179 0,275 0,358 0,523 24 0,175 0,269 0,350 0,510 25 0,171 0,264 0,342 0,498 26 0,168 0,258 0,335 0,487 27 0,165 0,253 0,328 0,477 28 0,162 0,248 0,322 0,467 29 0,159 0,244 0,316 0,458 30 0,156 0,239 0,310 0,449 31 0,153 0,235 0,305 0,441 41 0,133 0,203 0,263 0,378 61 0,109 0,166 0,214 0,306 121 0,077 0,117 0,151 0,214	21	0,188	0,289	0,376	0,552
24 0,175 0,269 0,350 0,510 25 0,171 0,264 0,342 0,498 26 0,168 0,258 0,335 0,487 27 0,165 0,253 0,328 0,477 28 0,162 0,248 0,322 0,467 29 0,159 0,244 0,316 0,458 30 0,156 0,239 0,310 0,449 31 0,153 0,235 0,305 0,441 41 0,133 0,203 0,263 0,378 61 0,109 0,166 0,214 0,306 121 0,077 0,117 0,151 0,214	22	0,183	0,282	0,367	0,537
25 0,171 0,264 0,342 0,498 26 0,168 0,258 0,335 0,487 27 0,165 0,253 0,328 0,477 28 0,162 0,248 0,322 0,467 29 0,159 0,244 0,316 0,458 30 0,156 0,239 0,310 0,449 31 0,153 0,235 0,305 0,441 41 0,133 0,203 0,263 0,378 61 0,109 0,166 0,214 0,306 121 0,077 0,117 0,151 0,214	23	0,179	0,275	0,358	0,523
26 0,168 0,258 0,335 0,487 27 0,165 0,253 0,328 0,477 28 0,162 0,248 0,322 0,467 29 0,159 0,244 0,316 0,458 30 0,156 0,239 0,310 0,449 31 0,153 0,235 0,305 0,441 41 0,133 0,203 0,263 0,378 61 0,109 0,166 0,214 0,306 121 0,077 0,117 0,151 0,214	24	0,175	0,269	0,350	0,510
27 0,165 0,253 0,328 0,477 28 0,162 0,248 0,322 0,467 29 0,159 0,244 0,316 0,458 30 0,156 0,239 0,310 0,449 31 0,153 0,235 0,305 0,441 41 0,133 0,203 0,263 0,378 61 0,109 0,166 0,214 0,306 121 0,077 0,117 0,151 0,214	25	0,171	0,264	0,342	0,498
28 0,162 0,248 0,322 0,467 29 0,159 0,244 0,316 0,458 30 0,156 0,239 0,310 0,449 31 0,153 0,235 0,305 0,441 41 0,133 0,203 0,263 0,378 61 0,109 0,166 0,214 0,306 121 0,077 0,117 0,151 0,214	26	0,168	0,258	0,335	0,487
29 0,159 0,244 0,316 0,458 30 0,156 0,239 0,310 0,449 31 0,153 0,235 0,305 0,441 41 0,133 0,203 0,263 0,378 61 0,109 0,166 0,214 0,306 121 0,077 0,117 0,151 0,214	27	0,165	0,253	0,328	0,477
30 0,156 0,239 0,310 0,449 31 0,153 0,235 0,305 0,441 41 0,133 0,203 0,263 0,378 61 0,109 0,166 0,214 0,306 121 0,077 0,117 0,151 0,214	28	0,162	0,248	0,322	0,467
30 0,156 0,239 0,310 0,449 31 0,153 0,235 0,305 0,441 41 0,133 0,203 0,263 0,378 61 0,109 0,166 0,214 0,306 121 0,077 0,117 0,151 0,214	29	0,159	0,244	0,316	0,458
31 0,153 0,235 0,305 0,441 41 0,133 0,203 0,263 0,378 61 0,109 0,166 0,214 0,306 121 0,077 0,117 0,151 0,214	30	0,156	0,239	0,310	0,449
41 0,133 0,203 0,263 0,378 61 0,109 0,166 0,214 0,306 121 0,077 0,117 0,151 0,214		·		·	·
61 0,109 0,166 0,214 0,306 121 0,077 0,117 0,151 0,214		,	,	· · · · · · · · · · · · · · · · · · ·	,
121 0,077 0,117 0,151 0,214	61	,	•	·	
	121	,	•	· · · · · · · · · · · · · · · · · · ·	·
	1001	,	,	· · · · · · · · · · · · · · · · · · ·	·

ПРИЛОЖЕНИЕ Г

Число N объектов наблюдений (γ =0) (обязательное)

P(t)	α						
	0,80	0,90	0,95	0,99			
0,500	_	_	_	7			
0,800	8	10	13	20			
0,900	15	21	30	44			
0,950	30	40	60	85			
0,980	75	120	140	230			
0,990	150	220	280	430			
0,995	330	430	600	800			

ПРАКТИЧЕСКАЯ РАБОТА 2

ОПРЕДЕЛЕНИЕ ПОКАЗАТЕЛЕЙ РЕМОНТОПРИГОДНОСТИ И КОМПЛЕКСНЫХ ПОКАЗАТЕЛЕЙ НАДЕЖНОСТИ МАШИН

Цель работы:

Изучить методику расчета показателей ремонтопригодности машин и определить их значения в соответствии с полученным заданием (приложение А данной работы), а также методику расчета комплексных показателей надежности машин и произвести расчет их значений в соответствии с полученным заданием (приложения А первой и второй работы).

Время выполнения работы – 4 часа.

Порядок выполнения работы:

- 1. На основе исходной информации (приложение А данной работы) произвести первичную статистическую обработку по методике, представленной в разделе 1. (60 минут).
- 2. На основе представленной методики расчета показателей ремонтопригодности машин определить их значения. (40 минут).
- 3. На основе представленной методики расчета комплексных показателей надежности определить их значения (40 минут).

Первичная статистическая обработка данных

В соответствии с полученным заданием произвести статистическую обработку первичной информации по методике, представленной в разделе 1. Определить средние значения \bar{t} , среднеквадратическое отклонение σ и коэффициент вариации ν на основе составленного статистического ряда. Прежде, чем составить статистический ряд, необходимо значения времени ремонта объекта расположить в порядке возрастания, т.е. построить вариационный ряд.

Основные показатели ремонтопригодности

- время восстановления t время, затрачиваемое на обнаружение и устранение неисправности, ч;
- среднее время восстановления \bar{t} матожидание времени восстановления работоспособности, ч;

- вероятность восстановления в заданное время P(t) - вероятность того, что время восстановления работоспособности объекта не превысит заданного.

Среднее время восстановления \vec{t} было определено по методике, представленной в работе 1.

Вероятность восстановления в заданное время P(t) определяется для каждого интервала статистического ряда. Далее необходимо определить теоретический закон распределения случайной величины — времени восстановления работоспособности. Для этого опираются на коэффициент вариации [выражение (1.5) работы 1].

При нормальном законе распределения P(t) находим следующим образом.

Используя известную формулу (здесь F(t) — функция распределения нормального закона)

$$F(t)=1-P(t),$$
 (2.1)

находим значения функции F(t) в зависимости от t.

Значение t определяем по формуле

$$t = \frac{t_i - \vec{t}}{\sigma},\tag{2.2}$$

где t_i — середина i-го интервала статистического ряда;

і – среднее значение времени восстановления;

 σ – среднеквадратическое отклонение.

Зная t, по данным приложения Б данной работы находим значение F(t). Далее, по формуле (2.1) находим значение P(t) для i-го интервала.

Найденное значение P(t) означает вероятность того, что в данном интервале время восстановления работоспособности объекта не превысит заданного (для МТЗ-167 часов, для ДТ-175С -236 часов).

Когда случайная величина — время восстановления работоспособности распределена по закону Вейбулла, P(t) определяем по следующей методике.

Для нахождения значений функции F(t) необходимо найти значение $\frac{t}{a}$ для каждого интервала и параметры закона Вейбулла —b и Cb.

$$\frac{t}{a} = \frac{t_i - t_{CM}}{a},\tag{2.3}$$

где t_i – середина i-го интервала;

 $t_{\scriptscriptstyle CM}$ — начальное значение вариационного ряда.

$$a = \frac{\sigma}{Ch},\tag{2.4}$$

где σ — среднеквадратическое отклонение.

Параметры закона распределения Вейбулла b и Cb находим по данным приложения В данной работы.

Рассчитав значение $\frac{t}{a}$ и зная b, по приложению Γ данной работы находим значение F(t) для каждого интервала, далее определяем значение P(t).

Комплексные показатели надежности

Важнейшими комплексными показателями надежности машин являются коэффициент технического использования и коэффициент готовности.

Коэффициент технического использования K_{mu} определяется по формуле

$$K_{mu} = \frac{t_{cym}}{t_{cym} + t_{pem} + t_{o6c\pi}},$$
(2.5)

где t_{cym} — суммарная наработка всех объектов (приложение А первой работы);

 t_{pem} — суммарное время простоев из-за ремонтов всех объектов (приложение А данной работы);

 $t_{oбcn}$ — суммарное время простоев на проведение ТО всех объектов. В данном случае рассматриваем самое трудоемкое ТО-3.

Периодичность ТО-3 составляет 1000мото-ч. трудоемкость ТО-3 для ДТ-175С – 25 ч., для МТЗ – 17 ч.

Используя данные приложения А первой работы, находим количество ТО-3 и их общую трудоемкость для того или другого трактора и определяем $t_{oбcn}$.

Коэффициент готовности K_{Γ} определяем по формуле

$$K_{\Gamma} = \frac{To}{To + \bar{t}},\tag{2.6}$$

где To — наработка на отказ:

$$To = \frac{1}{n} \sum_{i=1}^{n} \frac{t_{i}}{r_{i}}, \tag{2.7}$$

где n — количество объектов;

 r_i — количество отказов;

 t_i — наработка i-го объекта, мото-ч.

Данные о n, r_i , t_i находим в приложении A первой работы.

Содержание отчета

- 1. Титульный лист.
- 2. Цель работы.
- 3. Результаты выполнения работы.
- 4.Ответы на контрольные вопросы.

Защитить отчет у преподавателя.

Контрольные вопросы

- 1. Назовите основные показатели ремонтопригодности и раскройте их суть.
- 2. Какие основные комплексные показатели надежности известны вам? Методика их определения.
- 3. Чем отличается коэффициент технического использования от коэффициента готовности?

ПРИЛОЖЕНИЕ А
Затраты времени на проведение текущего ремонта тракторов ДТ-175С (вариант 1) и МТЗ-82 (вариант 2) (обязательное)

$\mathcal{N}_{\underline{0}}$	Затраты в	ремени на	№	Затраты вр	ремени на
трактора	ремонт о	бъекта, ч	трактора	ремонт об	
	Вариант 1	Вариант 2		Вариант 1	Вариант
					2
1	239	169	23	234	168
2	241	170	24	235	165
3	235	166	25	237	164
4	237	163	26	239	167
5	241	175	27	236	178
6	245	171	28	233	180
7	232	167	29	246	160
8	231	162	30	235	166
9	243	163	31	236	167
10	242	164	32	237	165
11	236	159	33	230	164
12	234	161	34	231	179
13	230	176	35	232	163
14	240	162	36	240	162
15	233	179	37	241	168
16	238	177	38	242	178
17	236	167	39	233	175
18	234	166	40	234	161
19	248	172	41	244	165
20	249	170	42	243	169
21	250	165	43	248	170
22	247	161	44	235	167
			45	234	171

ПРИЛОЖЕНИЕ Б Функция распределения F(t) нормального закона (обязательное)

t	0	1	2	3	4	5	6	7	8	9
0,0	0,500	504	508	512	516	520	524	528	532	536
0,1	0,540	544	548	552	556	560	564	568	571	575
0,2	0,579	583	587	591	595	599	603	606	610	614
0,3	0,618	622	625	629	633	637	641	644	648	625
0,4	0,655	659	663	666	670	674	677	681	684	688
0,5	0,691	693	699	702	705	709	712	716	719	722
0,6	0,736	729	732	736	739	742	745	749	752	755
0,7	0,758	761	764	767	770	773	776	779	782	785
0,8	0,788	781	794	797	800	802	805	808	811	813
0,9	0,816	819	821	824	826	829	831	834	837	839
1,0	0,841	844	846	849	851	853	855	858	860	862
1,1	0,864	867	869	871	873	875	877	879	881	883
1,2	0,885	887	889	891	893	894	896	898	900	902
1,3	0,903	905	907	908	910	911	913	915	916	918
1,4	0,919	921	922	924	925	926	928	929	932	932
1,5	0,933	934	936	937	938	939	941	942	943	944
1,6	0,945	946	947	948	950	951	952	953	954	955
1,7	0,955	956	957	958	959	960	961	962	962	963
1,8	0,964	965	966	966	967	968	969	969	970	971
1,9	0,971	972	973	973	974	974	975	976	976	977
2,0	0,977	978	978	979	979	980	980	981	981	982
2,1	0,982	983	983	983	984	984	985	985	985	986
2,2	0,986	986	987	987	987	988	988	988	989	989
2,3	0,989	990	990	990	990	991	991	991	991	992
2,4	0,992	992	992	992	993	993	993	993	993	994
2,5	0,994	994	994	994	994	995	995	995	995	995
2,6	0,995	995	995	996	996	996	996	996	996	996
2,8	0,997	998	998	998	998	998	998	998	998	998
3,0	0,999	999	999	999	999	999	999	999	999	999

Параметры и коэффициенты распределения Вейбулла (обязательное)

ПРИЛОЖЕНИЕ В

b	КЬ	Cb	v
1,0	1,000	1,000	1,000
1,1	0,965	0,878	0,910
1,2	0,941	0,787	0,837
1,3	0,924	0,716	0,775
1,4	0,911	0,659	0,723
1,5	0,903	0,612	0,678
1,6	0,897	0,574	0,640
1,7	0,892	0,540	0,605
1,8	0,889	0,512	0,575
1,9	0,887	0,485	0,547
2,0	0,886	0,463	0,523
2,1	0,886	0,441	0,498
2,2	0,886	0,425	0,480
2,3	0,886	0,409	0,461
2,4	0,887	0,394	0,444
2,5	0,887	0,380	0,428
3,0	0,893	0,326	0,365

 $\bar{t} = aKb$, $\sigma = aCb$

ПРИЛОЖЕНИЕ Г

Функция распределения F(t) закона Вейбулла (обязательное)

t/	b	1,0	1,2	1,4	1,6	1,8	2,0	2,5	3,0	3,5
α										
0,	1	0,095	0,061	0,039	0,025	0,016	0,010	0,003	0,001	0,000
0,2	2	0,181	0,135	0,100	0,073	0,054	0,039	0,018	0,008	0,004
0,3	3	0,259	0,210	0,169	0,136	0,108	0,086	0,048	0,027	0,015
0,4	4	0,330	0,283	0,242	0,206	0,175	0,148	0,096	0,062	0,040
0,5	5	0,393	0,353	0,315	0,281	0,250	0,221	0,162	0,117	0,085
0,6	5	0,451	0,418	0,380	0,357	0,329	0,302	0,243	0,194	0,154
0,	7	0,503	0,479	0,455	0,432	0,409	0,397	0,336	0,290	0,249
0,8	3	0,551	0,535	0,519	0,503	0,488	0,473	0,436	0,401	0,367
0,9	9	0,593	0,586	0,578	0,570	0,563	0,555	0,536	0,518	0,499
1,0)	0,632	0,632	0,632	0,632	0,632	0,632	0,632	0,632	0,632
1,1	1	0,667	0,674	0,681	0,688	0,695	0,702	0,719	0,736	0,752
1,2	2	0,699	0,712	0,725	0,738	0,750	0,763	0,793	0,822	0,850
1,3	3	0,727	0,746	0,764	0,782	0,799	0,815	0,854	0,889	0,918
1,4	4	0,753	0,776	0,798	0,820	0,840	0,859	0,902	0,936	0,961
1,5	5	0,777	0,803	0,829	0,852	0,874	0,895	0,936	0,966	0,984
1,0	5	0,798	0,828	0,855	0,880	0,903	0,923	0,961	0,983	0,994
1,	7	0,817	0,849	0,878	0,903	0,926	0,944	0,977	0,993	0,998
1,8	3	0,835	0,868	0,897	0,923	0,944	0,961	0,987	0,997	_
1,9	9	0,850	0,885	0,914	0,939	0,958	0,973	0,993	0,999	_
2,0)	0,865	0,899	0,929	0,952	0,969	0,982	0,996	_	_
2,	1	0,877	0,912	0,941	0,962	0,978	0,988	0,998	_	_
2,2	2	0,889	0,924	0,951	0,971	0,984	0,992	0,999	_	_
2,3	3	0,900	0,934	0,960	0,977	0,989	0,995	_	_	_
2,4	4	0,909	0,943	0,967	0,981	0,992	0,997	_	_	_
2,5	5	0,918	0,950	0,973	0,987	0,994	0,998	_	_	_

ПРАКТИЧЕСКАЯ РАБОТА 3

ОПРЕДЕЛЕНИЕ ТОЧНОСТИ ПОКАЗАТЕЛЕЙ НАДЕЖНОСТИ

Цель работы:

Изучить методы определения точности расчетных показателей надежности, далее определить точность рассчитанных ранее показателей ремонтопригодности и комплексных показателей надежности тракторов ДТ-175С и МТЗ.

Время выполнения работы – 2 часа.

Порядок выполнения работы:

- 1. На основе представленной информации изучить методы определения точности показателей надежности (20 мин).
- 2. Определить точность полученных в разделе 2 показателей ремонтопригодности (50 мин).

Методы определения точности показателей надежности

Чтобы получить представление о точности оценок параметров, пользуются разработанными в математической статистике понятиями доверительной вероятности и доверительного интервала.

Возможная наибольшая абсолютная ошибка $\ell \alpha$ зависит от величины доверительной вероятности α . Чем с большим доверием необходимо оценить показатель, тем больше будет абсолютная ошибка и величина доверительного интервала.

В практике расчета показателей надежности сельскохозяйственной техники чаще всего приходится встречаться с расчетом средних значений показателей. Точность определения показателей при этом будет зависеть от количества испытанных объектов — объема выборки n. Так, если провести несколько испытаний машин (в каждом испытании объем выборки n_i , то для каждого случая средние значения показателей надежности будут отличаться друг от друга по величине, рассеиваясь вокруг истинного, но неизвестного нам матожидания для генеральной совокупности. Это рассеивание зависит от количества машин, участвующих в каждом испытании, чем их меньше, тем рассеивание будет больше.

Связь величины рассеивания среднего значения показателя (среднеквадратического отклонения среднего значения - $\sigma \vec{t}$) с вели-

чиной рассеивания самого показателя (среднеквадратического отклонения самого показателя σ) при разном количестве объектов испытаний установлена в теории вероятностей в виде

$$\sigma \vec{t} = \frac{\sigma}{\sqrt{n}},\tag{3.1}$$

где σ — среднеквадратическое отклонение времени восстановления t от среднего значения \vec{t} ;

n — число объектов испытаний.

С учетом этого отношения абсолютная ошибка $\ell \alpha$, нижняя – t_{α}^{H} и верхняя t_{α}^{b} границы доверительного интервала и величина интервала $J\alpha$ при заданной доверительности α определяются по формулам:

Для нормального закона

$$\ell_{\alpha} = t_{\alpha} \frac{\sigma}{\sqrt{n}}; \tag{3.2}$$

$$t_{\alpha}^{H} = \bar{t} - t_{\alpha} \frac{\sigma}{\sqrt{n}}; \tag{3.3}$$

$$t_{\alpha}^{b} = \vec{t} + t_{\alpha} \frac{\sigma}{\sqrt{n}}; \tag{3.4}$$

$$J\alpha = t_{\alpha}^b - t_{\alpha}^H \,, \tag{3.5}$$

где \vec{t} — среднее значение времени восстановления тракторов ДТ-175С и МТ3;

 t_{α} – коэффициент, определяемый по данным приложения Б первой работы в зависимости от значений α и отношения n/α .

Для закона Вейбулла

$$t_{\alpha}^{H} = (-Cb) \overline{y} \gamma_{3} + Cb \tag{3.6}$$

$$t_{\alpha}^{b} = \langle \!\!\! \left(-Cb \, \!\!\! b \!\!\! \right) \!\!\! \sqrt{\gamma_{1}} + Cb$$
 (3.7)

$$J\alpha = t_{\alpha}^b - t_{\alpha}^H, \qquad (3.8)$$

где γ_1 , γ_3 — коэффициенты, определяемые по данным приложения Б первой работы в зависимости от значений доверительной вероятности α и числа объектов испытаний N;

 $Cb,\ b$ — коэффициенты распределения Вейбулла (приложение В второй работы).

В отличие от закона нормального распределения доверительные границы при распределении Вейбулла асимметричны среднему значению показателя надежности, причем верхняя граница отличается от среднего на большую величину, чем нижняя.

Наибольшая абсолютная ошибка $\ell \alpha$ определяется по формуле

$$\ell_{\alpha} = t_{\alpha} \frac{\sigma}{\sqrt{N}}.$$
 (3.9)

Относительную ошибку E_{α} среднего значения показателя независимо от вида распределения можно определить по формуле

$$E_{\alpha} = \frac{t_{\alpha}^{b}}{\bar{t} - t_{CM}},\tag{3.10}$$

где $t_{c_{M}}$ — величина смещения (начальное значение вариационного ряда времени восстановления тракторов ДТ-175С и МТ3).

Определение точности расчетных значений показателей надежности

Точность полученных показателей надежности (показатели ремонтопригодности) определяют в следующем порядке:

- 1. Задаются доверительной вероятностью α (α =0,8; 0,9; 0,95).
- 2. Зная закон распределения и объем выборки n, определяют значение величины t_{α} и γ_{1} , γ_{3} (приложение Б первой работы).
- 3. Определяют границы доверительного интервала и абсолютную ошибку для нормального закона распределения или закона распределения Вейбулла, используя формулы (3.2...3.9).
 - 4. Определяют относительную ошибку по формуле (3.10).

Содержание отчета

- 1. Титульный лист.
- 2. Цель работы.
- 3. Результаты выполнения работы.
- 4.Ответы на контрольные вопросы.
- Защитить отчет у преподавателя.

Контрольные вопросы

- 1.С помощью каких величин определяется точность показателей надежности?
- 2. Чем отличается методика определения точности показателей надежности для нормального закона распределения и закона распределения Вейбулла?
 - 3. Какое назначение имеет доверительная вероятность α ?

ПРАКТИЧЕСКАЯ РАБОТА 4

ОЦЕНКА КАЧЕСТВА РЕМОНТА

Цель работы:

Освоить методику оценки качества ремонта тракторов и их агрегатов.

Время выполнения работы – 2 часа.

Порядок выполнения работы:

- 1. Изучить методику определения показателей качества ремонта тракторов.
 - 2. Оценить качество ремонта тракторов ДТ-175С и МТЗ.

Методика оценки качества ремонта машин

Оценку качества ремонта машин на ремонтных предприятиях производят по коэффициентам качества для 80% гамма — ресурса $K(80\%)_{MP}$ и среднего ресурса \overline{K}_{MP} :

$$K(80\%)_{MP} = \frac{T_{MP} \leqslant 0\%}{T_{MP}^{H} \leqslant 0\% \chi_{3}}, \tag{4.1}$$

где \overline{T}_{MP} — фактический средний межремонтный ресурс (определен в предыдущих работах с использованием данных приложения А первой работы), мото — ч;

 K_3 — зональный коэффициент (для Восточносибирского региона $K_3 = 0.8$);

 $T_{MP}(80\%)$ — восьмидесяти процентный гамма-ресурс отремонтированных машин, рассчитываемый по формуле (4.3) в том случае, когда принят нормальный закон распределения (при $v \le 0.33$).

$$T_{MP} \leqslant 0\% = \overline{T}_{MP} - H_{\kappa} \sigma, \tag{4.3}$$

где \overline{T}_{MP} — фактический средний межремонтный ресурс (определен ранее по формуле 1.3);

 σ – среднеквадратическое отклонение (определено по формуле 1.4);

 H_K – квантиль, определяемый по приложению А данной работы в зависимости от P [для $T_{MP}(80\%)$ P=0,8].

Если принят закон Вейбулла (ν >0,33), то по данным приложения В второй работы определяем для найденного по формуле (1.5) значения коэффициента вариации ν его параметры: b, Cb; $\alpha = \frac{\sigma}{Cb}$ [σ – среднеквадратическое отклонение, определенное по формуле (1.4)].

Принимаем P = 0.8.

Далее определяем значение квантиля $H\kappa/\alpha$ по данным приложения Б данной работы для $F(t)=1-P(T_{MP})$ и b. Найдя значение $H\kappa/\alpha=x$, окончательно находим $H\kappa=x\cdot\alpha$.

Определим 80-процентный ресурс:

$$T_{MP}(80\%) = H\kappa + t_{CM},$$
 (4.4)

где t_{CM} — величина смещения (для 1 варианта t_{CM} =1600, для 2 варианта t_{CM} =1550, согласно приложения А первой работы).

 T_{MP}^{H} **€**0%] - нормированный 80% гамма-ресурс, значения которого для тракторов ДТ-175С и МТЗ-82 находятся в таблице 4.1.

Таблица 4.1 – Значения нормативного 80% гамма-ресурса

Марка трактора	ДТ-175С	MT3-82
Двигатели T_{MP}^{H} (0%),	4800	4500
мото-ч		

Определение коэффициента качества ремонта

Определяем коэффициент качества ремонта и его доверительные границы по межремонтному 80% гамма-ресурсу [формула (4.1)].

Доверительные границы рассеивания коэффициентов качества ремонта определяются с учетом величины относительной ошибки переноса δ , определяемой по формуле (1.7) работы 1.

$$K \leqslant 0\% \frac{H}{MP} = \langle -\delta \rangle K \leqslant 0\% \frac{M}{MP},$$

$$K \leqslant 0\% \frac{B}{MP} = \langle +\delta \rangle K \leqslant 0\% \frac{M}{MP},$$

$$(4.5)$$

где K (80%) $_{MP}$ — коэффициент качества для 80% гамма-ресурса, определяемый по формуле (4.1).

 $K(80\%)_{MP}^{H}$ — нижняя доверительная граница;

 $K(80\%)_{MP}^{B}$ б — верхняя доверительная граница.

Коэффициент качества ремонта \overline{K}_{MP} определяется по формуле (4.2). Его доверительные границы рассеивания определяем по формулам

$$\overline{K}_{MP}^{H} = (-\delta) \overline{K}_{MP},$$

$$\overline{K}_{MP}^{B} = (+\delta) \overline{K}_{MP},$$
(4.6)

где \overline{K}_{MP}^{H} – нижняя доверительная граница;

 \overline{K}_{MP}^{B} — верхняя доверительная граница.

Содержание отчета

- 1. Титульный лист.
- 2. Цель работы.
- 3. Результаты выполнения работы.
- 4. Ответы на контрольные вопросы.

Защитить отчет у преподавателя.

Контрольные вопросы

- 1. С помощью каких показателей оценивается качество ремонта машин?
 - 2. В чем отличие коэффициентов $K(80\%)_{MP}$ и \overline{K}_{MP} ?
- 3. Каково назначение верхней и нижней доверительных границ среднего значения коэффициента качества ремонта?

ПРИЛОЖЕНИЕ А

Квантили H_K нормального распределения (обязательное)

P	0	1	2	3	4	5	6	7	8	9
0,5	0,000	0,025	0,050	0,075	0,100	0,126	0,151	0,176	0,202	0,227
0,6	0,253	0,279	0,305	0,332	0,358	0,385	0,412	0,440	0,468	0,496
0,7	0,524	0,553	0,583	0,613	0,643	0,675	0,706	0,739	0,772	0,806
0,8	0,842	0,878	0,915	0,954	0,994	1,036	1,080	1,126	1,175	1,227
0,9	1,282	1,341	1,405	1,476	1,555	1,645	1,751	1,881	2,054	2,326

ПРИЛОЖЕНИЕ Б

Квантили H/α распределения закона Вейбулла (обязательное)

F(t) b	1.0	1.2	1.4	1.6	1.8	2.0	2.5	3.0
0,01	0,010	0,022	0,037	0,056	0,078	0,100	0,159	0,216
0,02	0,020	0,039	0,062	0,087	0,114	0,143	0,210	0,272
0,05	0,051	0,084	0,120	0,156	0,192	0,226	0,305	0,372
0,07	0,073	0,112	0,154	0,194	0,233	0,269	0,350	0,417
0,10	0,105	0,153	0,200	0,245	0,286	0,325	0,407	0,472
0,15	0,174	0232	0,285	0,332	0,380	0,419	0,498	0,558
0,20	0,223	0,287	0,343	0,392	0,435	0,472	0,549	0,607
0,30	0,357	0,424	0,479	0,525	0,564	0,597	0,662	0,709
0,40	0,511	0,571	0,619	0,657	0,688	0,715	0,764	0,799
		·	·	·				
0,50	0,693	0,737	0,770	0,795	0,816	0,833	0,864	0,885
0,60	0,916	0,930	0,939	0,947	0,953	0,957	0,966	0,971

ПРАКТИЧЕСКАЯ РАБОТА 5

ИЗУЧЕНИЕ ЗАКОНОМЕРНОСТЕЙ ИЗНОСА ДЕТАЛЕЙ

Цель работы:

Изучение износа деталей при помощи микрометража с целью определения показателей надежности.

Время выполнения работы 6 часов.

1 Микрометраж деталей

1.1 Задачи микрометража

Микрометраж гильзы проводится для выявления и анализа характера и величины износа гильзы в различных сечениях по высоте.

Микрометраж партии гильз, поступивших в ремонт двигателей, проводится с целью получения первичной информации для дальнейшей статистической обработки.

1.2 Методика измерений

Измерения проведем индикаторным нутромером в нескольких сечениях при помощи винтового приспособления. Величина износа в каждом сечении определяется по формуле

$$h_i = D_o - D_i, \text{MM} \tag{5.1}$$

где h_i — величина износа гильзы в i-ом сечении, мм;

 $D_{\scriptscriptstyle o}$ – диаметр гильзы в ее верхней неизношенной части, мм;

 D_{i} – диаметр гильзы в <u>i</u>-ом сечении, мм.

Настроив индикаторный нутромер на нуль по верхней неизношенной части гильзы, по отклонениям стрелки определяем величину износа в сечениях. Результаты замеров сводим в таблицу 5.1.

Таблица 5.1 – Результаты замеров гильзы

i	0	1	2	3	4	5	6	7	8	9	10
$h_{_{i}}$	0	0,17	0,18	0,15	0,11	0,00	0,07	0,06	0,04	0,03	0,02

По результатам замеров построим диаграмму износа гильзы по высоте с учетом того, что первое сечение расположено в верхней части гильзы (рисунок 5.1).

Рисунок 5.1 – Диаграмма износа гильзы.

2 Обработка результатов микрометража деталей

2.1 Предварительные вычисления

В результате измерения партии гильз цилиндров двигателя А – 41 в сечении наибольшего износа получены следующие значения износа в мм, которые расположены в порядке возрастания: 0,03; 0,05; 0,06; 0,07; 0,07; 0,08; 0,09; 0,09; 0,10; 0,11; 0,11; 0,11; 0,12; 0,12; 0,13; 0,13; 0,15; 0,15; 0,16; 0,16; 0,20; 0,20; 0,21; 0,23; 0,25; 0,25; 0,27; 0,28;

0,30. Всего 29 замеров.

Определение зоны рассеивания *S*:

$$S = h_{\text{max}} - h_{\text{min}}, \tag{5.2}$$

где $h_{\scriptscriptstyle{\mathrm{max}}}$ — максимальная величина износа гильзы; $h_{\scriptscriptstyle{\mathrm{min}}}$ — минимальная величина износа гильзы, $h_{\scriptscriptstyle{\mathrm{min}}}$ = 0,03 мм.

$$S = 0.30 - 0.03 = 0.27$$
 MM

Определяем число разрядов (интервалов) K:

$$K = \sqrt{29} = 5.39$$
.

Принимаем K=5.

Определяем длину разряда l:

$$l = \frac{S}{K} = \frac{0,27}{5} = 0,05 \tag{5.3}$$

Определяем величину сдвига с из условия:

$$0.03 \ge c \ge 0.03 - \frac{0.05}{2}$$

В нашем случае имеет смысл принять c = 0.02мм.

Начало первого разряда $a_{\scriptscriptstyle 1}$ принимаем равным величине сдвига, то есть

$$a_{1} = c = 0.02$$
 мм

В нашем случае имеет смысл принять конечное значение ряда информации $b_{\kappa}=0.32\,\mathrm{mm}$. Тогда окончательно длина разряда определится из выражения:

$$l = \frac{b_k - c}{K} = \frac{0,32 - 0,02}{5} = 0,06 \text{ мм}$$
(5.4)

2.2 Построение таблицы статистического ряда и статистических графиков

Таблица 5.2 – Статистический ряд износа гильзы

i	Разряды		$h_{_{i}}$	l_{i}	$m_{_i}$	$q_i = \frac{m_i}{m_i}$	$f = \frac{q_i}{q_i}$	$\sum F_{i}$
						n	l_{i}	
	a_{i}	$b_{_{i}}$						
1	0,02	0,08	0,05	0,06	6	0,207	3,45	0,207
2	0,08	0,14	0,11	0,06	10	0,345	5,75	0,552
3	0,14	0,20	0,17	0,06	6	0,207	3,45	0,759
4	0,20	0,26	0,23	0,06	4	0,138	2,3	0,897
5	0,26	0,32	0,29	0,06	3	0,103	1,72	1

В таблице a_i — начало i-го разряда, b_i — конец i-го разряда.

 $l_i = b_i - a_i$ — длина i-го разряда, мм;

$$t_i = \frac{a_i - b_i}{2}$$
 – середина *i*-го разряда, мм;

n — сумма частот в разрядах;

 $m_{_{\!i}}$ — частота или число отказавших объектов в i-ом разряде, то есть в промежутке наработки от $a_{_{\!i}}$ до $b_{_{\!i}}$, мм;

 $q_{i} = \frac{m_{i}}{n}$ — частость или статистическая вероятность отказа в i-ом разряде;

 $f = \frac{q_i}{l_i}$ — статистическая плотность распределения износа в i-ом разряде, mm^{-1} ;

 ΣF_i — накопленная частота или статистическая функция распределения износа в i-ом разряде.

По данным таблицы 5.2 строим гистограмму (рисунок 5.2), используя значения q_i в каждом разряде i.

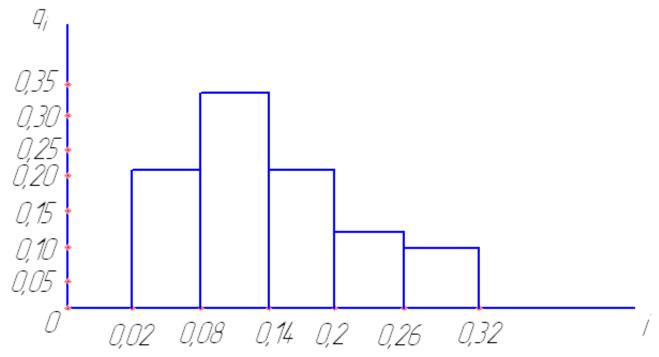


Рисунок 5.2 – Гистограмма распределения износа гильз.

2.3 Определение математического ожидания, среднеквадратического отклонения и коэффициента вариации

Статистическую оценку математического ожидания m и среднеквадратического отклонения σ , а также коэффициента вариации ν определяем по формулам

$$\bar{m} = \frac{1}{n} \sum_{i=1}^{K} h_{i} \cdot m_{i}; \qquad (5.5)$$

$$\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{K} \left(h_{i} - m\right)^{2} m_{i}}.$$
(5.6)

Расчеты сведем в таблицу.

Таблица 5.3 – K расчету \bar{m} и σ

i	$h_{_i}$	$m_{_i}$	$h_{_i}\cdot m_{_i}$	$\left(h_{i}-\overline{m}\right)^{2}m_{i}$
1	0,05	6	0,3	0,06
2	0,11	10	1,1	0,016
3	0,17	6	1,02	0,0024
4	0,23	4	0,92	0,0256

Продолжение таблицы 3									
5	0,29	3	0,87	0,0588					
			$\sum_{i=1}^{K} h_{i} \cdot m_{i} = 4,21$	$\sum \left(h_i - m\right)^2 m_i = 0.162$					

$$\bar{m} = \frac{4,21}{29} = 0,15 \text{ мм}$$

$$\sigma = \sqrt{\frac{1}{29 - 1} \cdot 0,1628} = 0,076 \text{ мм}$$

Определяем коэффициент вариации по формуле

$$v = \frac{\sigma}{m - c}.$$

$$v = \frac{0,076}{0.15 - 0.02} = 0,585$$
(5.7)

2.4 Подбор теоретического закона распределения и определение его параметров

Решение о том, какому закону распределения подчиняется величина износа детали, принимаем с учетом 3-х факторов: физической сущности случайной величины с учетом области применения того или иного закона распределения; внешнего вида гистограммы, сравнивая её с различными кривыми теоретического закона распределения f(t); величины коэффициента вариации ν .

По третьему фактору имеются следующие рекомендации:

при v < 0,3 скорее всего имеет место 3HP;

при 0.3 < v < 0.5 может иметь место, как 3HP, так и 3PB;

при v > 0,5 имеет место ЗРВ;

при v = 1 имеет место ЭЗР как частный случай ЗРВ.

По физической сущности в данном случае нас устраивает два закона: закон нормального распределения и закон распределения Вейбулла, поскольку речь идет об износе детали. По внешнему виду гистограммы (рисунок 5.2) скорее всего, подходит закон распределения Вейбулла, так как гистограмма ассиметрична. По величине коэф-

фициента вариации также подходит закон Вейбулла, поскольку v=0.585.

Таким образом, мы можем предположить, что величина износа детали подчиняется закону распределения Вейбулла:

$$f(h) = \frac{b}{a} \left(\frac{h-c}{a}\right)^{b-1} \cdot e^{-\left(\frac{h-c}{a}\right)^{b}},\tag{5.8}$$

$$F(h) = 1 - e^{-\left(\frac{h-c}{a}\right)^b}.$$
(5.9)

где F(h) — функция распределения вероятностей;

f(h) — теоретический закон распределения износа гильз;

h — величина износа детали, мм;

a, b, c — параметры закона распределения.

Параметр сдвига c = 0.02 - определен ранее.

По значению коэффициента вариации из таблицы приложения В работы №2 находим значение параметра b и коэффициента $c_{_b}$. При v=0,59 b=1,76, $c_{_b}$ = 0,52. Находим значение параметра а по формуле

$$a = \frac{\sigma}{c_b}. ag{5.10}$$

$$a = \frac{0,076}{0,52} = 0,146$$
 мм.

Итак, принимаем $a=0,15;\ b=1,76;\ c=0,02.$ Тогда предполагаемый теоретический закон f(h) и функция F(h) примут вид:

$$f(h) = \frac{1,76}{0,15} \left(\frac{h - 0,02}{0,15} \right)^{1,76-1} \cdot e^{-\left(\frac{h - 0,02}{0,15}\right)^{1,76}}, \tag{5.11}$$

$$F(h) = 1 - e^{-\left(\frac{h - 0.02}{0.15}\right)^{1.76}},$$
(5.12)

2.5 Построение теоретических графиков функции распределения износа

Для построения теоретических графиков произведем расчеты по формулам (5.8) и (5.9). Расчеты сведем в таблицу 5.4.

Таблица 5.4 - K расчету F(h) и f(h)

h	0,	0,05	0,08	0,11	0,14	0,17	0,20	0,23	0,26	0,29	0,32
	02										
F(h)	0	0,058	0,18	0,33	0,49	0,63	0,74	0,83	0,89	0,92	0,95
			1	4	1	2	8				
f(h)	0	4,70	5,24	4,99	4,33	3,60	2,47	2,09	1,43	1,10	0,72

Далее строим графики зависимости F(h) и f(h) от h.

2.6 Проверка соответствия принятого теоретического 2.7 закона статистическим данным

По формуле (5.13) определяем меру расхождения χ^2 . Расчеты сведем в таблицу 5.5.

$$\chi^{2} = \sum_{i=1}^{K} \frac{\left(\boldsymbol{n}_{i} - \left[\sum \boldsymbol{m}_{i} \cdot \boldsymbol{q}_{i} \right] \right)^{2}}{\sum \boldsymbol{m}_{i} \cdot \boldsymbol{q}_{i}}$$
(5.13)

Значение q_i вычисляем по формуле (5.14), а значения $F(b_i)$ для конечного значения каждого разряда i и $F(a_i)$ для начального значения каждого разряда i берем из таблицы 5.4.

$$q_i = F(b_i) - F(a_i),$$
 (5.14)

где a_i -начало i-го разряда (см. таблицу 5.2); b_i -конец i-го разряда (см. таблицу 5.2).

Таблица 5.5 - K расчету χ^2

i	$m_{_i}$	$q_{_i}$	$\sum m_i \cdot q_i$	$\underline{(m_i - [\sum m_i \cdot q_i])^2}$
				$\sum m_{_{i}} \cdot q_{_{i}}$
1	6	0,181	5,249	0,107
2	10	0,310	8,99	0,113
3	6	0,257	7,453	0,283
4	4	0,142	4,118	0,003
5	3	0,060	1,74	0,912

$$\sum_{i=1}^{K} \frac{(q_i - [\sum m_i \cdot q_i])^2}{\sum m_i \cdot q_i} = 1,445$$

Итак, $\chi^2 = 1,445$.

По формуле (5.15) определяем число степеней свободы r учетом того, что для закона распределения Вейбулла φ =2.

$$r = k - (\varphi + 1),$$
 (5.15)

где k — число разрядов статистического ряда; φ — число параметров принятого закона распределения.

$$r = 5 - (2 + 1) = 2$$

Зная χ^2 и r по таблице приложения A данной работы находим вероятность совпадения теоретического закона распределения с опытным распределением износа гильзы P=45%. Так как P>10%, можем сделать вывод о том, что принятый теоретический закон распределения Вейбулла не противоречит статистическим данным. Следовательно, износ гильз цилиндров двигателя A-41 подчиняется закону распределения Вейбулла с параметрами: a=0,15, b=1,76, c=0,02.

2.8 Анализ кривых и определение процента гильз, подлежащих обработке под ремонтный размер

Знание закона распределения износа деталей позволяет решать целый ряд задач:

– определять процент деталей, годных к дальнейшему употреблению;

- обоснованно подходить к выбору способа восстановления детали;
- определять процент деталей подлежащих восстановлению;
- прогнозировать потребность в запасных частях.

Определим процент гильз, подлежащих обработке под ремонтный размер методом расточки с последующим хонингованием. Для этого нужно найти максимально допустимый диаметр гильзы $D_{\scriptscriptstyle{\max}}$, при котором еще возможна обработка ее под ремонтный размер:

$$D_{\text{max}} = D_{p} - (\delta_{p} + \delta_{x}), MM$$
 (5.16)

где D_{P} – ремонтный размер гильзы, мм;

 δ_x – припуск на хонингование, мм.

Максимально допустимый износ гильзы $h_{\scriptscriptstyle \max}$ при этом составит:

$$h_{\text{max}} = D_{\text{max}} - D_{n}, \mathcal{M}M \tag{5.17}$$

где $D_{\scriptscriptstyle n}$ – номинальный диаметр гильзы, мм.

Вероятность того, что величина износа не превысит значения $h_{\scriptscriptstyle \max}$, и есть не что иное, как доля гильз, подлежащих обработке под ремонтный размер:

$$P(h < h_{\text{max}}) = F(h_{\text{max}}) = 1 - e^{-\left(\frac{h_{\text{max}} - c}{a}\right)^{a}}$$
 (5.18)

В нашем случае $D_{_n}=130$ мм; $D_{_P}=130,5$ мм; $\delta_{_P}=0,1$ мм; $\delta_{_x}=0,05$ мм.

 $D_{\scriptscriptstyle{
m max}}=130,\!5$ - $(0,\!1+0,\!05)=130,\!35$ мм; $h_{\scriptscriptstyle{
m max}}=130,\!35$ - $130=0,\!35$ мм (в дальнейших расчетах принимаем $h_{\scriptscriptstyle{
m max}}$ равным $0,\!30$ мм).

В расчетах a = 0.15, b=1.76, c=0.02.

$$F(h_{\text{max}}) = 1 - e^{-\left(\frac{0.30 - 0.02}{0.15}\right)^{1.76}} = 0.95$$

Таким образом, 95% гильз можно обработать под ремонтный размер, так как их износ не превышает 0,30 мм, а 5% гильз с износом более 0,30 мм можно восстановить только наращиванием или методом усадки.

2.9 Особенности обработки данных в случае закона нормального распределения

Если выдвинуть гипотезу о подчинении износа закону нормального распределения, то расчеты в нашем примере нужно вести по формулам

$$f(h) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(h-\bar{m})^2}{2\cdot\sigma^2}}$$

$$F(h) = \Phi\left(\frac{h-\bar{m}}{\sigma}\right) = \Phi(t), \tag{5.19}$$

где $\bar{m}=0.15$, $\sigma=0.076$ мм — параметры ЗНР. h — величина износа гильзы.

$$t = \frac{h - m}{\sigma}.$$

Значения функции $\Phi(t)$ в зависимости от t находим в приложении Б второй практической работы.

Результаты расчетов сведены в таблицу 5.6.

Таблица 5.6 - K расчету f(h) и F(h) для 3HP

$h=a_i, b_i$	0,02	0,08	0,14	0,20	0,26	0,32
$h-\bar{m}$	-1,71	-0,92	-0,13	0,66	1,45	2,24
σ						
$\frac{\left(h - m\right)^2}{2\sigma^2}$	1,462	0,423	0,008	0,218	1,051	2,509
f(h)	1,217	3,439	5,207	4,221	1,835	0,428
F(h)	0,044	0,179	0,448	0,745	0,926	0,987

Далее строим графики зависимости F(h) и f(h) от h.

Теперь проверим, соответствует ли теоретический закон статистическим данным. Для этого определим меру расхождения χ^2

Таблица 5.7 – к расчету χ^2

i	$m_{_i}$	$q_{_i}$	$\sum m_i \cdot q_i$	$(m_i - [\sum m_i \cdot q_i])^2$
				$\sum m_{_{i}} \cdot q_{_{i}}$
1	6	0,135	3,915	1,110
2	10	0,269	7,801	0,620
3	6	0,297	8,613	0,723
4	4	0,181	5,249	0,297
5	3	0,061	1,769	0,857

$$\sum_{i=1}^{K} \frac{\{n_i - [\sum m_i \cdot q_i]^{2}\}}{\sum m_i \cdot q_i} = 3,607$$

 $\chi^2 = 3,607$, r = 3, по таблице приложения А данной работы находим вероятность P = 26%. Т.к. P > 10%, делаем вывод о том, что данный закон нормального распределения не противоречит опытным данным об износе гильз цилиндров.

Т.к. оба закона (3PB и 3HP) не противоречат опытным данным, принимаем закон нормального распределения для дальнейшей обработки опытных данных.

Порядок выполнения работы

- 1. Получить у преподавателя вариант задания с данными об износе гильз (29 значений).
- 2. Выполнить все необходимые расчеты, представленные в подпунктах пункта 2 данной работы с целью изучения закономерностей износа гильз цилиндров двигателя А-41.

Содержание отчета

- 1. Титульный лист.
- 2. Цель и задачи работы.
- 3. Результаты выполнения работы.
- 4. Ответы на контрольные вопросы.

Защитить отчет у преподавателя.

Контрольные вопросы

- 1. Для чего проводится микрометраж деталей машин в испытаний на надежность?
- 2. Назовите основные факторы для выбора теоретического закона распределения случайной величины.
- 3. Что представляет из себя гистограмма распределения случайной величины?
- 4. В чем отличие графика функции f(h) для двух рассмотренных в лабораторной работе теоретических законов распределения?
- 5. Какова минимальная величина вероятности совпадения опытных и теоретических данных согласно критерия Пирсона χ^2 ?

ПРИЛОЖЕНИЕ А

Критерий согласия Пирсона χ^2 (обязательное)

P%	95	90	80	70	50	30	20	10
r								
1	0,00	0,02	0,06	0,15	0,45	1,07	1,64	2,71
2	0,10	0,21	0,45	0,71	1,39	2,41	3,22	4,60
3	0,35	0,58	1,00	1,42	2,37	3,66	4,64	6,25
4	0,71	1,06	1,65	2,20	3,36	4,88	5,99	7,78
5	1,14	0,61	2,34	3,00	4,35	6,06	7,29	9,24
6	1,64	2,20	3,07	3,83	5,35	7,23	8,56	10,0
7	2,17	2,83	3,82	4,67	6,34	8,58	9,80	12,0
8	2,73	3,49	4,59	5,53	7,34	9,52	11,0	13,4
9	3,32	4,17	5,38	6,39	8,34	10,7	12,2	14,7
10	3,94	4,86	6,18	7,27	9,34	11,8	13,4	16,0

ПРАКТИЧЕСКАЯ РАБОТА 6

МОДЕЛИРОВАНИЕ ПРОЦЕССОВ ЭКСПЛУАТАЦИИ ТЕХНИЧЕСКИХ УСТРОЙСТВ

Цель работы: освоить математическое моделирование процесса эксплуатации.

Время выполнения работы 4 часа.

1. Техническое описание исследуемого устройства

Основой исследуемого элемента является клапан давления. Клапаны давления делятся на напорные (предохранительные или прямые), редукционные и клапаны разности давлений. Существуют также комбинированные аппараты, выполняющие функции переливного или редукционного клапанов (в зависимости от направления потока), редукционного клапана и реле давления. Предохранительные клапаны предохраняют гидропривод от давления, превышающего установленное значение. Они действуют лишь в аварийных ситуациях (пропускают масло из напорной линии в сливную) в отличие от переливных клапанов, предназначенных для поддержания заданного давления путем непрерывного слива масла во время работы. В станкостроении централизованно не изготавливаются клапаны для работы в аварийном режиме; предохранительные клапаны гидросистем, как правило, работают в режиме переливных клапанов.

При небольших расходах масла и рабочих давлениях применяют предохранительные клапаны прямого действия (рисунок 6.1), в которых давление масла, создаваемое насосом 2, воздействует на шарик 5 (или плунжер; предохранительного клапана 3, прижатый к седлу пружиной 4). Когда усилие от давления масла на шарик отходит влево, и масло через щель между шариком и седлом сливается в резервуар 1, причем вследствие дросселирования потока давление в трубопроводе 6 поддерживается постоянным и примерно равным отношению усилия пружины 4 к площади шарика 5, на которую действует давление масла. При увеличении расхода масла и рабочего давления резко увеличиваются размеры пружины, поэтому в гидросистемах чаще используют аппараты непрямого действия, в которых небольшой вспомогательный клапан управляет перемещением переливного золотника, подключенного к напорной и сливной линиям.

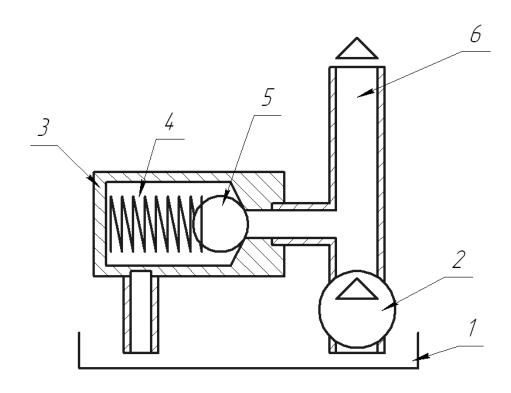


Рисунок 6.1 – Схема предохранительного клапана

Предохранительные клапаны должны поддерживать постоянно установленное давление в возможно более широком диапазоне изменения расходов масла, проходящих через клапан. В динамических режимах необходимое быстродействие, исключающее возникновение пика давления при резком увеличении расхода масла (например, в момент включения насоса или торможении гидродвигателя). Однако повышение быстродействия часто вызывает потерю устойчивости, сопровождающееся шумом и колебаниями давления.

Редукционные клапаны служат для создания установленного постоянного давления в отдельных участках гидросистемы, сниженного по сравнению с давлением в напорной линии.

При рабочих давлениях до 10 МПа (иногда до 20 МПа) для предохранения гидросистем от перегрузки, поддержания заданных давлений при разности давлений в подводимом и отводном потоках масла, для дистанционного управления потоком и различных блокировок применяют гидроклапаны давления (напорные золотники), в которых на торец золотника действует давление масла в одной линии управления, а на противоположный — давление в другой линии управления и результирующее усилие пружины.

Аппараты имеют две основные линии и две линии управления, причем, используя эти линии управления независимо или соединяя их

можно получить четыре исполнения клапана, имеющих различное функциональное назначение (клапаны могут работать в режиме предохранительного и переливного клапанов, а также режимов регулируемых клапанов разности давлений и клапанов последовательности).

К группе комбинированных аппаратов относятся регуляторы давления для уравновешивающих цилиндров и клапаны усилия режима. Первые предназначены для поддержания установленного давления в линии отвода независимо от направления потока и являются аппаратами непрямого действия. Вторые аналогичны по функциональному назначению, однако являются аппаратами прямого действия и могут дополнительно оснащаться микровыключателем, контролирующим осевое положение золотника в корпусе.

Исполнение:

Клапаны давления имеют различные исполнения по типу управления, диаметру условного прохода, присоединенного к номинальному давлению.

Большинство клапанов имеют ручное управление и лишь некоторые исполнения предохранительных клапанов имеют электрическое управление нагрузкой или пропорциональное электроуправление.

Схема подключения клапанов показана на рисунке 6.2. В гидросистеме масло от регулируемого насоса 1 через распределитель 4 поступает в поршневую полость цилиндра 5, в из истоковой вытесняется в бак.

Давление масла определяется нагрузкой на цилиндре и контролируется манометром 2. Предохранительный клапан 3 срабатывает в случае перегрузки. Предохранительный клапан работает в переливном режиме, так как дроссель 6 ограничивает поток масла, поступающего от нерегулируемого насоса 1 в цилиндр 5, а оставшаяся часть масла через клапан 3 возвращается в бак, причем давление в гидросистеме определяется настройкой клапана и практически не зависит от нагрузки на цилиндре. В гидросистеме (рисунок 6.2) насос разгружается от давления при выключении магнита клапана 3 с электроуправлением. Поскольку в сливной линии установлен подпорный клапан 7, слив управления введен в бак из отверстия *Y*. Это позволяет обеспечить постоянство давления в линии *P* независимо от настройки давления подпора. В схеме предусмотрена возможность ручной нагрузки насоса с помощью вентиля 8, подключенного к отверстию *X*.

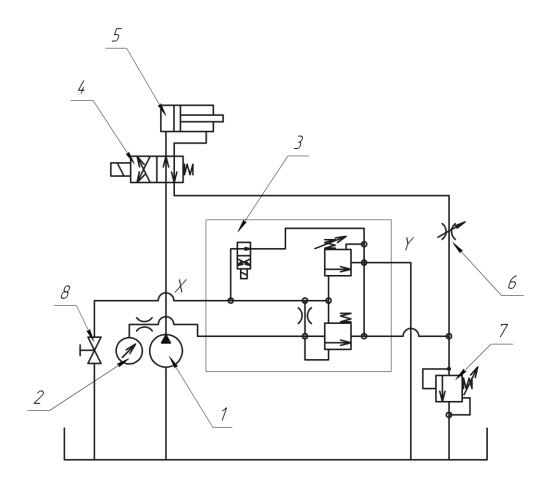


Рисунок 6.2 – Схема подключения клапанов.

3. Краткие теоретические сведения об основах моделирования процесса эксплуатации

Экспериментальное определение показателей надежности является невыгодным из-за больших затрат времени и ресурсов. Поэтому часто используется математическое моделирование процесса эксплуатации.

Для моделирования процесса эксплуатации мы должны задаться законом распределения времени наработки до отказа. В данной работе рассматриваются два случая: закон Гаусса и экспоненциальный закон распределения. Необходимо также задаться определенным значением среднего времени наработки до отказа.

Смоделируем работу устройства, предполагая, что отказы устройства подчиняются:

а) экспоненциальному закону

$$f(t) = \frac{1}{\bar{t}}e^{-\frac{t_i}{\bar{t}}};$$
(6.1)

б) закону Гаусса

$$f(t) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(t_i - \bar{t})^2}{2\sigma^2}},$$
(6.2)

где - t текущее значение наработки устройства;

 $ar{t}$ — среднее значение наработки до отказа;

 σ – среднее квадратическое отклонение наработки до отказа.

Показатели надежности будем определять по следующим выражениям:

Вероятность безотказной работы $P_{i}^{(t)}$:

$$p_{i}(t) = 1 - \int_{0}^{t} f(t)dt.$$
 (6.3)

Интенсивность отказов:

$$\lambda_{i}(t) = \frac{f_{i}(t)}{p_{i}(t)}.$$
(6.4)

- для экспоненциального закона

$$p_{i}(t) = e^{-\frac{i}{t}};$$

$$\lambda_{i}(t) = \frac{1}{t},$$
(6.5)

 $_{\text{где}}$ – λ_{i} (t) интенсивность отказов.

– для нормального закона

$$p_i(t) = 1 - F(t),$$
 (6.6)

где F(t) – функция распределения нормального закона в зависимости от параметра t.

$$t = \frac{t_i - t}{\sigma},\tag{6.7}$$

$$\sigma = v \cdot \dot{t}, \tag{6.8}$$

где v — коэффициент вариации наработки до отказа.

Значения функции F(t) в зависимости от параметра t представлены в приложении Б второй работы.

Интенсивность отказов $\lambda_i^{(t)}$ находим по формуле (6.4) в зависимости от текущего значения $t_i^{(t)}$.

2.1. Определение показателей надежности исследуемого элемента гидравлического оборудования

В соответствии с заданием принимаем среднее время наработки

до отказа t = 1600ч.

При моделировании функционирования принятого элемента гидравлического оборудования число этих элементов принято равным N=10000. Число интервалов гистограммы п принимаем равным 6.

Далее порядок расчетов следующий:

- рассчитываем функции распределения наработки до отказа по формулам (6.1) и (6.2) данной работы и строим гистограммы и графики, представленные на рисунках 6.3, 6.4, 6.9, 6.14 данной работы.
- рассчитываем вероятность безотказной работы и интенсивность отказов устройства для экспоненциального и нормального законов распределения наработки до отказа, используя формулы (6.4), (6.5), (6.6), (6.7), (6.8) данной работы. Строим гистограммы и графики, представленные на рисунках 6.5, 6.6, 6.7, 6.8, 6.10, 6.11, 6.12, 6.13, 6.15, 6.16, 6.17, 6.18 данной работы.

Экспоненциальный закон.

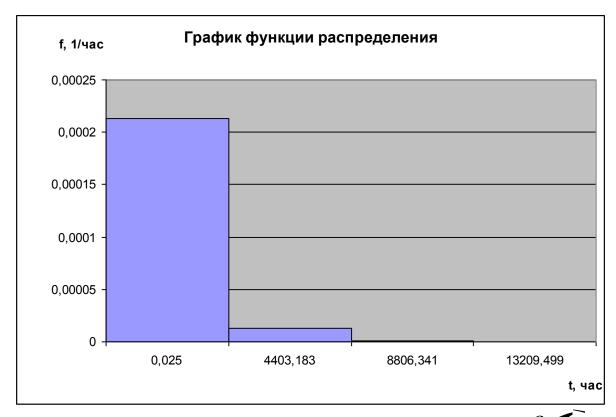


Рисунок 6.3 – Гистограмма функции распределения f — от наработки t.

Рисунок 6.4 – Графическая зависимость f от наработки t.

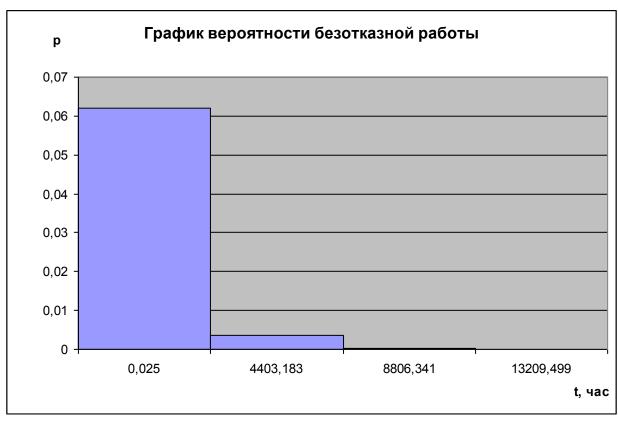


Рисунок 6.5 – Гистограмма вероятности безотказной работы p(t) от наработки t.

Рисунок 6.6 – Графическая зависимость P(t) от наработки t.

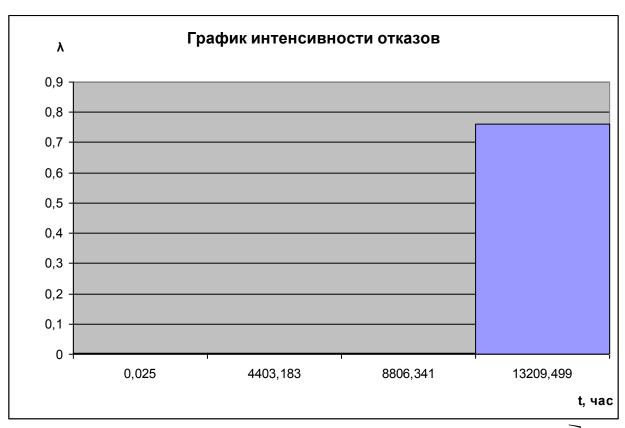


Рисунок 6.7 – Гистограмма интенсивности отказов $\lambda_i = 0$ наработки t.

Рисунок 6.8 – Графическая зависимость $\lambda_i = 0$ от наработки t.

Как видно из приведённых рисунков рассматриваемое изделие – клапан разгрузки золотникового типа работает не надёжно: в момент $\bar{t}=1600$ часов отказало около 40% изделий.

Закон Гаусса

При моделировании отказов оборудования, распределённых по законам Гаусса, задаём значения коэффициента вариации V = 0,1 (значительный разброс) и V = 0,05 (незначительный разброс).

Результаты моделирования приведены на рисунках 6.9...6.18.

Строим графические зависимости показателей надежности при ${\cal V}=0,1.$

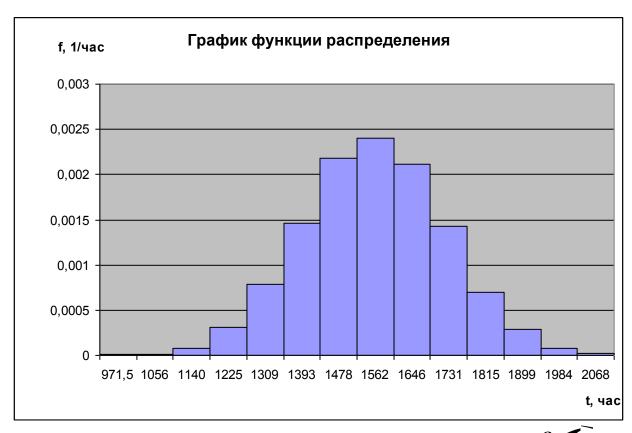


Рисунок 6.9 – Гистограмма функции распределения $f \in \mathcal{L}$ от наработки t.

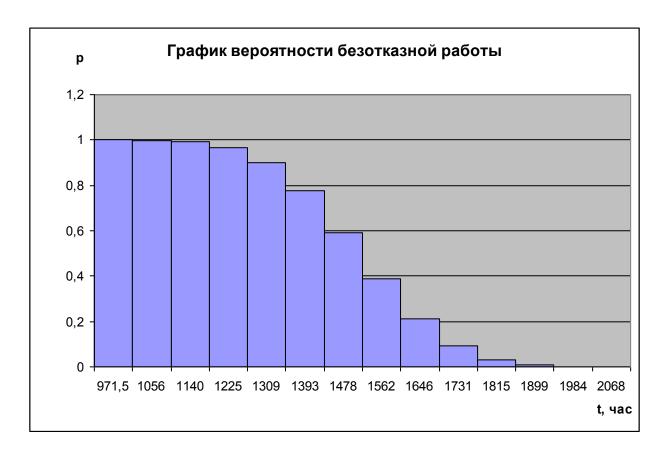


Рисунок 6.10 – Гистограмма вероятности безотказной работы p(t) от наработки t.

Рисунок 6.11 – Графическая зависимость p(t) от наработки t.

Рисунок 6.12 – Гистограмма интенсивности отказов $\lambda_i \subseteq$ от наработки t.

Рисунок 6.13 – Графическая зависимость $\lambda_i = 0$ от наработки t.

Как видно из приведённых графиков, рассматриваемый элемент является ненадёжным, т.к. до времени средней наработки до отказа доработали лишь 65 % изделий.

Строим графические зависимости показателей надежности при $\mathcal{V} = 0{,}05.$

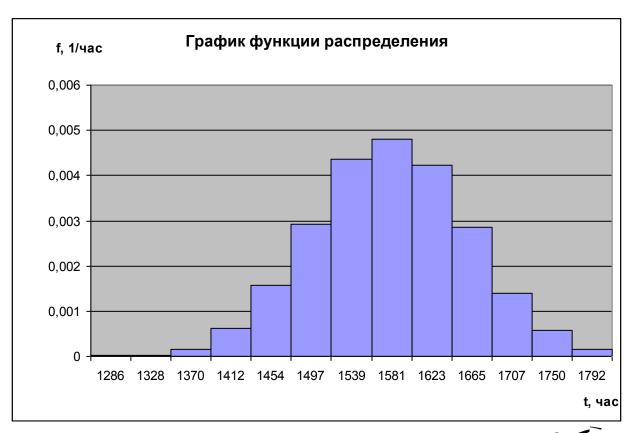
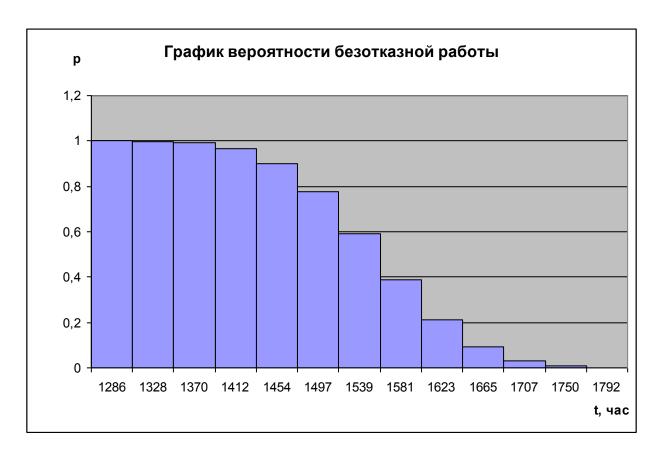



Рисунок 6.14 – Гистограмма функции распределения f с от наработки t

Рисунок 6.15 – Гистограмма вероятности безотказной работы p(t) от наработки t

Рисунок 6.16 – Графическая зависимость p(t) от наработки t.

Рисунок 6.17 – Гистограмма интенсивности отказов $\lambda_i = 0$ наработки t

Рисунок 6.18 – Графическая зависимость $\lambda_i \blacktriangleleft$ от наработки t.

Как видно из приведённых графиков, рассматриваемый элемент является ненадёжным, т.к. до времени средней наработки до отказа доработали лишь 70 % изделий.

Порядок выполнения работы

- 1. Получить вариант задания у преподавателя:
- значение наработки устройства;
- среднее значение наработки до отказа;
- значения коэффициента вариации.
- 2. Рассчитываем функцию распределения наработки f \P и показатели надежности устройства p(t) и λ_i \P для двух законов распределения по методике, представленной в пункте 2 данной работы.

Содержание отчета

- 1. Титульный лист.
- 2. Цель и задачи работы.
- 3. Результаты выполнения работы.
- 4. Ответы на контрольные вопросы.

Защитить отчет у преподавателя.

Контрольные вопросы

- 6. В чем отличие математического моделирования процесса эксплуатации технических объектов от экспериментальных исследований?
- 7. Чем отличаются графики рассмотренных в работе теоретических законов распределения случайной величины?
- 8. Какие показатели надежности рассмотрены в практической работе?
- 9. Какой физический смысл отражают рассмотренные в работе показатели надежности технического объекта?

ПРАКТИЧЕСКАЯ РАБОТА 7

ИССЛЕДОВАНИЕ НАДЕЖНОСТИ И РИСКА ВОССТАНАВЛИВАЕМОЙ НЕРЕЗЕРВИРОВАННОЙ СИСТЕМЫ

Целью работы является изучение влияния показателей надежности нерезервированной технической системы на ее техногенный риск. Время выполнения работы 4 часа.

1. Постановка задачи.

Дано:

- число элементов нерезервированной системы n;
- интенсивности отказа и восстановления элемента системы i-го типа λ_i и μ_i ;
 - время работы системы T_{P} , усл. ед.;
 - риск системы из-за отказа i-го элемента r_i , усл.ед.;
 - допустимый риск системы $R_{_{\it I\! I}}$, усл. ед.

Определить:

- наработку системы на отказ T, час;
- функцию готовности системы $K_{\Gamma}(t)$;
- коэффициент готовности системы $K_{\scriptscriptstyle \Gamma}$;
- техногенный риск системы $R_{\scriptscriptstyle C}(t)$, усл. ед.

Техногенный риск системы — комплексный показатель надежности. Он выражает вероятность аварии или катастрофы при эксплуатации технических систем. Иначе говоря, риск системы $R_c(t)$ - это вероятность возникновения аварийной ситуации. Риск системы может измеряться в усл. ед., то есть в величине принесенного ущерба.

2. Теоретические данные для выполнения практической работы

Основными показателями надежности восстанавливаемых технических систем являются:

- наработка на отказ T, час;
- функция готовности системы $K_{\Gamma}(t)$;
- коэффициент готовности K_r .

Для нерезервированной системы эти показатели вычисляются по следующим формулам

$$K_{\rm r}(t) = \frac{\mu_c}{\lambda_c + \mu_c} + \frac{\lambda_c}{\lambda_c} e^{-(\lambda_c + \mu_c)t} ; \qquad (7.1)$$

$$T = \frac{1}{\lambda_c}; (7.2)$$

$$\lambda_c = \sum_{1}^{n} \lambda_i; \tag{7.3}$$

$$\mu_c = \frac{\lambda_c}{\sum_{1}^{n} \frac{\lambda_i}{\mu_i}},\tag{7.4}$$

$$K_{\rm r} = \frac{\mu_c}{\lambda_c + \mu_c},\tag{7.5}$$

где n — число элементов системы;

t – текущий момент времени, час;

 λ_c – интенсивность отказа системы;

 $\mu_{\scriptscriptstyle C}$ – интенсивность восстановления системы;

 λ_{i} и μ_{i} — интенсивности отказа и восстановления i-го элемента системы.

Для вычисления риска системы $R_c(t)$ целесообразно пользоваться следующими двусторонними оценками:

$$K_{\Gamma} \cdot t \cdot \sum_{1}^{n} \lambda_{i} \cdot r_{i} \leq R_{c}(t) \leq t \cdot \sum_{1}^{n} \lambda_{i} \cdot r_{i},$$
 (7.6)

где K_{Γ} – коэффициент готовности системы;

 r_i — риск системы из-за отказа i-го элемента, усл. ед.

3. Пример выполнения практической работы

Нерезервированная система имеет следующие данные:

- число элементов системы n=10;
- время жизни (долговечность или время работы) системы $T_{\scriptscriptstyle p} = 1000$ часов;
 - допустимый риск системы $R_{\pi} \le 2500$ усл. ед.

Значения λ_i , μ_i , r_i для отдельных элементов системы приведены в таблице 7.1.

Таблица 7.1 – Исходные данные задачи

Номера	1	2	3	4	5	6	7	8	9	10
элементов										
$\lambda_i \cdot 10^{-4}$	1	0,23	0,36	0,054	0,72	0,83	0,08	0,25	0,6	1,2
час ⁻¹										
r_i , усл. ед.	20	50	40	10 ⁴	600	250	103	10	80	100
$\mu_i \cdot 10^{-1}$, час ⁻¹	0,2	0,3	0,5	2,0	1,0	1,2	7,0	0,5	1,0	1,0

3.1. Определение наработки на отказ системы

Интенсивность отказа системы определяется по формуле (7.3).

$$\lambda_{\rm c} = \sum_1^n \lambda_i = 5{,}324 \cdot 10^{-3} \, {\it vac}^{-1}.$$

Наработка на отказ T определяется по формуле (7.2).

$$T = \frac{1}{\lambda_c} = 187,8$$
 часа.

3.2. Определение функции готовности и коэффициента готовности системы

Находим значение суммы элементов вектора

$$\sum_{1}^{n} \frac{\lambda_i}{\mu_i} = 102,367 \cdot 10^{-3}.$$

Далее находим μ_c по формуле (7.4).

$$\mu_c = \frac{\lambda_c}{\sum_{1}^{10} \frac{\lambda_i}{\mu_i}} = \frac{5,324 \cdot 10^{-3}}{102,367 \cdot 10^{-3}} = 0,052.$$

Исходя из полученных данных, находим по формуле (7.5) коэффициент готовности.

$$K_{\Gamma} = \frac{\mu_{c}}{\lambda_{c} + \mu_{c}} = \frac{0,052}{0,005324 + 0,052} = 0,907.$$

Функцию готовности рассчитываем по формуле (7.1), результаты расчета оформляем в виде таблицы 7.2, в которой представлен расчет функции готовности рассматриваемого примера. При расчете функции готовности системы необходимо помнить, что число e = 2,718.

Таблица 7.2 – Функция готовности системы

t, yac	0	0,5	1,0	1,5	2,0	2,5	3,0	3,5	4,0	4,5	5,0
$K_{\rm r}(t)$	1,0	0,997737	0,994825	0,992347	0,989939	0,987599	0,985325	0,98311	0,980969	0,978882	0,976855

По данным таблицы 7.2 построим график функции готовности (см. рисунок 7.1).

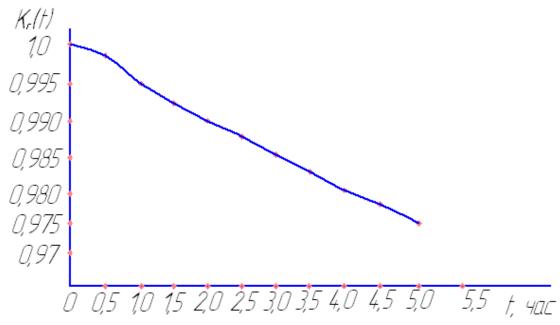


Рисунок 7.1 – График функции готовности технической системы

3.3. Анализ техногенного риска технической системы

Для расчета риска системы $R_c(t)$ используем выражение (7.6). Зная, что

$$K_{\Gamma} = 0.907, \sum_{i=1}^{10} \lambda_{i} \cdot r_{i} = 1475, 9 \cdot 10^{-3},$$

находим значение левой и правой частей выражения (7.6).

$$K_{_T} \cdot t \cdot \sum\limits_{_1}^{_{10}} \lambda_{_i} \cdot r_{_i} = 0,97 \cdot 1000 \cdot 1475, 9 \cdot 10^{-3} \ge 1339$$
 $t \cdot \sum\limits_{_1}^{_{10}} \lambda_{_i} \cdot r_{_i} = 1000 \cdot 1475 \cdot 10^{-3} \le 1476$ $t = T_{_P} = 1000$ часов

Значения риска находятся в интервале

$$1339 \le R_c(1000) \le 1476$$
.

Риск системы можно считать приближенно равным среднеарифметическому из полученных оценок:

$$R_{_{C}}(t) = \frac{1339 + 1476}{2} = 1407$$
 усл.ед.

Так как расчетное значение техногенного риска исследуемой системы меньше допустимого риска, равного 2500 усл. ед., то такая система пригодна к эксплуатации.

Порядок выполнения работы

- 1. Получить у преподавателя вариант задания, который содержит значение времени жизни системы, значение допустимого риска, а также таблицу, аналогичную таблице 7.1.
 - 2. Согласно пункта 3 выполнить все необходимые расчеты:
 - определить наработку на отказ системы;
 - исследовать функцию и коэффициент готовности системы;
 - выполнить анализ риска системы.

Содержание отчета

- 1. Титульный лист.
- 2. Цель и задачи работы.
- 3. Результаты выполнения работы.
- 4. Ответы на контрольные вопросы.

Защитить отчет у преподавателя.

Контрольные вопросы

- 1. Что такое техногенный риск?
- 2. От каких показателей зависит коэффициент готовности системы?
- 3. Какое влияние оказывает время работы системы на функцию готовности?
- 4. Перечислите показатели, влияющие на техногенный риск технической системы.

ПРАКТИЧЕСКАЯ РАБОТА 8

ИССЛЕДОВАНИЕ НАДЕЖНОСТИ И РИСКА РЕЗЕРВИРОВАННОЙ ВОССТАНАВЛИВАЕМОЙ СИСТЕМЫ

Целью работы является изучение влияния ремонта (восстановления) на надежность и риск технической системы. Время выполнения работы 6 часов.

1. Постановка задачи

Техническая система имеет следующие показатели:

- время непрерывной работы t, час;
- интенсивность отказов λ , час⁻¹;
- интенсивность восстановления μ , **час**⁻¹;
- допустимая кратность резервирования m;
- риск из-за отказов системы r, усл. ед.;
- допустимый риск $R_{\rm I\!I}$ в течение времени t, усл. ед.

Определить:

- показатели надежности и риска исходной нерезервированной системы;
- показатели надежности и риска резервированной системы с заданной кратностью резервирования m;
- эффективность резервирования и восстановления как средств повышения надежности и снижения риска техники.

2. Теоретические данные для выполнения практической работы

Основными показателями надежности восстанавливаемых систем являются:

- наработка на отказ T;
- функция готовности $K_{\Gamma}(t)$;
- коэффициент готовности K_{Γ} .

Эти показатели зависят от вида и кратности резервирования, дисциплины и качества ремонтно-обслуживающих воздействий.

Для повышения надежности техники наиболее часто применяются два вида резервирования: с постоянно включенным резервом и по методу замещения отказавшего элемента. При этом обслуживание

и ремонт системы могут осуществляться с двумя видами приоритета – прямым и обратным. При прямом приоритете техника обслуживается в порядке поступления ее в ремонт. При обратном приоритете первой обслуживается техническая система, поступившая в ремонт последней.

Структурное резервирование с возможностью восстановления отказавших элементов в процессе функционирования системы является наиболее эффективным способом обеспечения и повышения надежности техники и снижения техногенного риска.

Однако применение резервирования удорожает технику и ее эксплуатацию. Поэтому кратность резервирования ограничена, и в большинстве случаев применяется резервирование с кратностью m=1 (дублирование). Из двух указанных видов резервирования наибольший рост надежности достигается при резервировании замещением. При этом этот вид резервирования имеет два недостатка:

- для его использования на практике требуется устройство для контроля состояния системы и коммутации при отказе работающей системы;
- снижается производительность системы, т.к. резервные элементы до отказа основных не работают.

С учетом недостатков резервирования замещением на практике наиболее часто применяется резервирование с постоянно включенным резервом надежности.

Наработка на отказ и коэффициент готовности резервированных восстанавливаемых систем при использовании одной ремонтнообслуживающей бригады вычисляются по следующим формулам:

- а) система с постоянно включенным резервом:
- одна обслуживающая бригада (n=1):

$$T = T_o \left(1 + \frac{1}{2p} \right), K_r = \frac{1 + 2p}{1 + 2p + 2p^2};$$
 (8.1)

- две обслуживающие бригады (n=2):

$$T = T_o \left(1 + \frac{1}{2p} \right), K_r = \frac{1 + 2p}{1 + 2p + p^2};$$
 (8.2)

- в) система замещением:
- одна обслуживающая бригада (n=1):

$$T = T_o \left(1 + \frac{1}{p} \right), K_r = \frac{1+p}{1+p+p^2};$$
 (8.3)

- две обслуживающие бригады (n=2):

$$T = T_o \left(1 + \frac{1}{p} \right), K_r = \frac{1+p}{1+p+0.5p^2};$$
 (8.4)

где
$$p=rac{\lambda}{\mu}$$
; $T_0=rac{1}{\mu}$.

3. Пример выполнения практической работы

3.1. Постановка задачи

Дано:

- время непрерывной работы t = 1000 часов;
- интенсивность отказа системы $\lambda = 10^{-4} \text{ час}^{-1}$;
- интенсивность восстановления системы, определяемая значением $p=\frac{\lambda}{\mu}$, $p=1;\,0,1;\,0,05;\,0,01;$
 - кратность резервирования m=1;
 - риск из-за отказа системы r=150000 усл. ед.;
- допустимый риск в течение времени непрерывной работы R(1000) = 360 усл. ед.
- 3.2. Определение наработки на отказ T и коэффициента готовности K_{Γ} системы

Расчеты производим по формулам (8.1), (8.2), (8.3), (8.4) для двух способов резервирования.

Для рассматриваемого примера $T_0 = \frac{1}{\lambda} = 10000$ часов.

Расчеты производим для всех заданных значений p в пункте 3.1. Результаты расчетов сводим в таблицу 8.1.

Таблица 8.1 -Результаты расчетов T и K_r

p	1	0,1	0,05	0,01
$TP1/T_o$	1,5	6	11	51
$TP2/T_o$	1,5	6	11	51
KP1	0,6	0,984	0,995	0,9998
KP2	0,75	0,992	0,9977	0,9999
$TZ1/T_o$	2	11	21	101
$TZ2/T_o$	2	11	21	101
KZ1	0,667	0,991	0,9976	0,9999
KZ2	0,8	0,995	0,9988	0,99995

В таблице приняты следующие обозначения:

- *TP1*, *TP2* наработка на отказ системы с постоянно включенным резервом с одной и двумя ремонтными бригадами;
- *TZ1*, *TZ2* наработка на отказ системы, резервированной по принципу замещения с одной и двумя бригадами;
- *KP1, KP* коэффициент готовности системы с постоянно включенным резервом с одной и двумя бригадами;
- *KZ1*, *KZ2* коэффициент готовности системы, резервированной по принципу замещения с одной и двумя бригадами.

Проводим анализ данных таблицы 8.1, исходя из полученных значений T и K_{Γ} для двух способов резервирования системы:

- наработка на отказ системы с постоянно включенным резервом при использовании одной ремонтно-обслуживающей бригады и при использовании двух бригад не зависит от числа ремонтных бригад и одинакова при различных значениях p;
- при малых значениях p наработка на отказ системы замещением почти в два раза больше, чем при дублировании с постоянно включенным резервом;
- резервирование с восстановлением является эффективным средством повышения наработки на отказ системы, это видно из таблицы по значениям p от 1 до 0,01, которые зависят от интенсивности восстановления μ ;
- число ремонтных бригад оказывает незначительное влияние на коэффициент готовности системы, если число p мало;
- при малых значениях p (p=0,05...0,01) вид резервирования не влияет на величину коэффициента готовности.

Для сравнения необходимо найти коэффициент готовности исходной нерезервированной системы по формуле

$$K_{\rm r} = \frac{1}{1+p}. (8.5)$$

Результаты расчета представлены в таблице 8.2.

Таблица 8.2 - 3начения K_{Γ} для нерезервированной системы

p	1	0,1	0,05	0,01
K_{Γ}	0,5	0,91	0,95	0,99

Сравнивая значения K_{Γ} в таблицах 8.1 и 8.2, мы видим, что коэффициент готовности нерезервированной системы K_{Γ} значительно ниже значений K_{Γ} для резервированной системы при всех значениях величины p.

3.3. Определение среднего времени безотказной работы системы

Формулы для расчета среднего времени безотказной работы для различных способов резервирования имеют вид:

- система с постоянно включенным резервом:

$$T_6 = T_o \left(1.5 + \frac{1}{2p} \right);$$
 (8.6)

- система с резервированием методом замещения:

$$T_6 = T_o \left(1.5 + \frac{1}{2p} \right);$$
 (8.7)

где $T_o = \frac{1}{\lambda}$ – среднее время безотказной работы нерезервированной системы, $T_o = 1000$ часов.

3.4. Определение риска системы

Риск системы определяем, приняв t = 1000 часов и m = 1.

Риск исходной нерезервированной системы определяется по формуле

$$R(t) = \frac{r\lambda t}{1+p'},\tag{8.8}$$

где R(t) – риск системы.

Риск резервированной системы с кратностью резервирования m=1 определяется по формулам:

– для постоянно включенного резерва:

$$R(t) = \frac{r\lambda 2p}{1+2p};\tag{8.9}$$

– для резерва замещением:

$$R(t) = \frac{tr\lambda p}{1+p}. (8.10)$$

Результаты расчета представлены в таблице 8.3.

Таблица 8.3 – Результаты расчета риска системы

Постоянно включенный резерв											
p	p 1 0,1 0,05 0,01										
R(t)	10000	2500	1364	294							
Резервирование замещением											
p	1	0,1	0,05	0,01							
R(t)	7500	1364	714	149							

Результаты расчетов техногенного риска системы R(t) при t=1000 часов и при двух видах резервирования показали (см. таблицу 8.3), что риск системы может быть меньше допустимого $R_{\text{д}}=360$ усл. ед. при условии, что величина $p \le 0{,}01$.

Это говорит о том, что на риск технической системы огромное влияние оказывает интенсивность восстановления системы.

Риск для исходной нерезервированной системы рассчитываем по приближенной формуле

$$R(t) = \frac{r\lambda t}{1+p}. (8.11)$$

При t=1000 часов риск нерезервированной исходной системы будет равен при $p \le 0.01$

$$R(1000) = rac{150000 \cdot 10^{-4} \cdot 1000}{1{,}01} = 14851 \,\mathrm{усл.\,eд.},$$

что выше допустимого.

Это говорит о том, что метод резервирования технической системы с целью повышения надежности позволяет значительно снизить риск системы и его последствия. Это видно из таблицы 8.3.

Порядок выполнения работы

- 1. Получить у преподавателя вариант задания, который содержит следующие данные:
 - интенсивность отказа системы λ , **час**⁻¹;
 - время непрерывной работы системы t, час;
 - кратность резервирования m (m=1);
 - риск из-за отказа системы r, усл. ед.;
 - допустимый риск в течение времени t, усл. ед.

Варианты заданий представлены в таблице 8.4.

Таблица 8.4 – Варианты заданий

$N_{\underline{0}}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
варианта																				
t, час	009	002	059	1000	096	810	380	052	380	006	820	630	1000	052	009	520	089	940	098	770
λ·10 ⁻⁴ , час ⁻¹	1,2	2,1	1,1	8,0	1,6	1,3	1,5	1,0	0,8	1,2	1,6	0,7	2,1	1,8	1,0	1,05	6,0	1,3	1,4	1,2
r · 10³, усл. ед.	100	95	130	89	06	125	85	120	110	115	200	180	75	105	130	115	135	128	132	140
<i>R</i> _Д , усл. ед.	410	510	350	420	500	180	270	490	515	470	360	710	800	465	370	450	059	550	350	440

- 2. Согласно пункта 3 выполнить все необходимые расчеты:
- рассчитать наработку на отказ и коэффициент готовности системы, провести анализ полученных расчетных данных для различных методов резервирования;
 - определить среднее время безотказной работы системы;
- определить риск системы и провести анализ риска для резервированной и нерезервированной систем.

Содержание отчета

- 1. Титульный лист.
- 2. Цель и задачи работы.
- 3. Результаты выполнения работы.
- 4. Ответы на контрольные вопросы.

Защитить отчет у преподавателя.

Контрольные вопросы

- 1. Перечислите основные показатели надежности резервированных систем.
- 2. Какие основные виды резервирования применяются для технических объектов?
- 3. Как влияет интенсивность восстановления на надежность резервированных систем?
- 4. Какое влияние оказывает резервирование на техногенный риск техники?

ПРАКТИЧЕСКАЯ РАБОТА 9

СТАТИСТИЧЕСКИЙ ПРИЕМОЧНЫЙ КОНТРОЛЬ НАДЕЖНОСТИ ИЗДЕЛИЙ

Цель работы:

Ознакомление с методами контроля надежности изделий в процессе их производства или ремонта на соответствующих предприятиях.

Время выполнения работы 4 часа.

1. Методы контроля надежности

Контроль надежности изделий имеет своей целью проверку соответствия надежности принятой партии установленному уровню. При этом конечным результатом, как правило, является одно из двух решений: принять партию изделий, считая их надежность удовлетворительной, или забраковать контролируемую партию как ненадежную.

Так как контроль надежности производится на основе испытаний выборки из партии произведенной продукции, то при принятии решений возможны два вида ошибок:

- ошибка первого рода: хорошая партия бракуется;
- ошибка второго рода: плохая партия принимается.

Вероятность ошибки первого рода называется риском поставщика и в расчетах обозначается буквой α . Вероятность ошибки второго рода называется риском заказчика и обозначается буквой β .

В практике контроля надежности пользуются, главным образом, методом однократной выборки (одиночный контроль) и последовательным методом.

1.2. Контроль надежности по методу однократной выборки

Метод однократной выборки заключается в том, что из контролируемой партии объема N изделий берется одна случайная выборка объема n экземпляров. Исходя из N, n и α или β устанавливаются оценочные нормативы A_0 и A_1 . Если выборочное значение контролируемого параметра меньше или равно A_0 , то партия признается надежной, если больше или равно A_1 , — партия бракуется.

Если контролируется число дефектных изделий в партии объема N, то при наличии в ней дефектных изделий \mathbf{Q}_0 вероятность отказа допределяется соотношением

$$A_0 = \frac{A_0}{N}, \tag{9.1}$$

и надежность считается высокой, близкой к оценочному нормативу A_0 при заданных α и β и при условии, что A_0 0,1.

Если в партии N содержится Π_1 дефектных изделий в таком количестве, что надежность считается низкой при заданных α и β и при условии, что $\mathbf{д_1} \leq 0,1$, то вероятность отказа $\mathbf{д_1}$ определяется соотношением

$$A_1 = \frac{A_1}{N}.$$
 (9.2)

ка к нормативу A_1 , и партия бракуется.

Оценочные нормативы A_0 и A_1 устанавливаются из следующих соотношений:

$$\alpha' = 1 - \sum_{d=0}^{A_0} C_{A_0}^d f^d (1 - f)^{A_0 - d}; \tag{9.3}$$

$$\beta' = \sum_{d=0}^{A_1 - 1} C_{A_1}^d f^d (1 - f)^{A_1 - d}, \tag{9.4}$$

где d – число дефектных изделий в выборке n;

 α' – риск поставщика, близкий к заданному α ;

 β' – риск заказчика, близкий к заданному β ;

$$f = \frac{n}{N}; (9.5)$$

 $C^d_{oldsymbol{eta}_0}$ — число сочетаний из $oldsymbol{eta}_0$ по d; $C^d_{oldsymbol{eta}_1}$ — число сочетаний из $oldsymbol{eta}_1$ по d.

$$C_{\Lambda_0}^d = \frac{\Lambda_0!}{d! (\Lambda_0 - d)!} \tag{9.6}$$

Факториал числа n (n!) вычисляется следующим образом. Возьмем 3, тогда $3=3\cdot 2\cdot 1=6;$ 0!=1 и $C_{A_0}^0=1$.

Соотношения (9.3) и (9.4) используются, как правило, для партий изделий объемом $N \le 500$.

При контроле больших партий N > 500 и 50 \leq n \leq 0,1N со сравнительно невысокой надежностью, когда $n\cdot\mathbf{д_0}\geq 4$ при определении A_0 и A_1 можно пользоваться формулами

$$\alpha' = 0.5 - \Phi_0 \left[\frac{A_0 - n \cdot \mu_0 + 0.5}{\sqrt{n \cdot \mu_0 (1 - \mu_0)}} \right]; \tag{9.7}$$

$$\beta' = 0.5 - \Phi_0 \left[\frac{n \cdot \mu_1 + 0.5 - A_1}{\sqrt{n \cdot \mu_1 (1 - \mu_1)}} \right], \tag{9.8}$$

где Φ_0 – функция Лапласа.

2. Примеры расчета контрольных параметров надежности по методу однократной выборки

2.1. Контроль надежности при *N*≤500

Контролю надежности подлежит партия из N=200 изделий. Определить приемочное (A_0) и браковочное (A_1) числа дефектных изделий в выборке n=40 изделий из партии N=200. Партия считается надежной, если в ней содержится $Д_0=5\%$ дефектных изделий и ненадежной, если $J_1=10\%$.

Риск поставщика принят равным 0,20, а риск заказчика 0,10. Исходные данные задачи представлены в таблице 9.1.

Таблица 9.1 – Исходные данные задачи

N	n	Д0	Д1	α	β	f	До	Д
200	40	0,05	0,1	0,2	0,1	0,2	10	20

Приемочное число A_0 определяется суммированием вероятностей $P(d \le A_0)$ биномиального распределения до величины α' , близкой к $\alpha = 0,2$.

Вероятности $P(d \le A_0)$ находим для d = 0, 1, 2, 3 по формуле

$$P(d \le A_0) = \sum_{d=0}^{A_0} C_{A_0}^d f^d (1 - f)^{A_0 - d}. \tag{9.9}$$

Подставляя исходные данные в формулу (9.9), получаем: P(d=0)=0,107; P(d=1)=0,268; P(d=2)=0,302; P(d=3)=0,201.

Суммируем эти вероятности в виде $\sum P(d \le 2)$ и $\sum P(d \le 3)$, получаем:

$$\sum P(d \le 2) = 0,678, \text{ t. e.} (0,107 + 0,268 + 0,302);$$

$$\sum P(d \le 3) = 0.879$$
, т. е. $(0.107 + 0.268 + 0.302 + 0.201)$

Вычитаем полученные суммы из 1, согласно формулы (9.3), и принимаем A_0 =2 с риском α' =0,322 или A_0 =3 с риском поставщика α' =0,121.

Браковочное число A_1 определяется суммированием вероятностей $P(d \le A_1)$, найденных по формуле (9.4). В данном случае

P(d=0)=0.01; P(d=1)=0.06; P(d=2)=0.137; d=0, 1, 2.

Число A_1 должно быть близко к β =0,10.

 $\sum P(d <= 1) = 0.07$, т. е $A_1 = 1$ с риском заказчика $\beta' = 0.07$;

$$\sum P(d \le 2) \approx 0.21$$
, т. е. $A_1 = 2$ с риском заказчика $\beta' = 0.21$.

Для решения подобной задачи студент получает свой вариант исходных данных в виде таблицы 9.1 у преподавателя.

2.2. Контроль надежности при нормальном законе распределения наработки до отказа при $50 \le n \le 0,1N$

Ускоренным испытаниям подвергнута партия гидроцилиндров, для которых удовлетворительной вероятностью безотказной работы в каждом цикле считается P=0,98. Тогда вероятность отказа $\mathbf{д_0}$ =1-

0,98=0,02. Найти приемочное число отказов A_0 с допустимым риском $\alpha=0,05$ для поставщика при объеме испытаний n=500 циклов.

Учитывая большой объем выборки, используем формулу (9.7) для определения приемочного числа отказов A_0 . Так как $\alpha \approx 0.05$, то табулированная функция Лапласа $\Phi_0(z)$ равна

$$\Phi_0(z) = \Phi_0 \left[\frac{A_0 - n \cdot \mu_0 + 0.5}{\sqrt{n \cdot \mu_0 (1 - \mu_0)}} \right] = 0.45, \tag{9.10}$$

т.е. $\Phi_0(z) = 0.5 - \alpha'$ или 0,5-0,05=0,45. Это следует из формулы (9.7). Из таблицы приложения А данной работы по значению $\Phi_0(z)$ =0,45 находим значение параметра z=1,65.

Приемочное число отказов A_0 рассчитывается по формуле

$$A_0 = z \cdot \sqrt{n \cdot \mu_0 (1 - \mu_0)} + n \cdot \mu_0 - 0.5. \tag{9.11}$$

Подставив значения исходных данных задачи (см. таблицу 9.2) в выражение (9.11), получим приемочное число отказов A_0 =15.

Для решения данной задачи студент должен получить вариант у преподавателя в виде таблицы, аналогичной таблице 9.2. рассмотренного примера в пункте 2.2.

Таблица 9.2 – Исходные данные задачи

P	α	n	Д0
0,98	0,05	500	0,02

Порядок выполнения работы

- 1. Получить у преподавателя вариант задания по пункту 2.1 в виде таблицы 9.1 и выполнить все необходимые расчеты, представленные в пункте 2.1.
- 2. Получить у преподавателя вариант задания по пункту 2.2 в виде таблицы 9.2 и выполнить все необходимые расчеты, представленные в пункте 2.2.

Содержание отчета

- 1. Титульный лист.
- 2. Цель и задачи работы.
- 3. Результаты выполнения работы.
- 4. Ответы на контрольные вопросы.

Защитить отчет у преподавателя.

Контрольные вопросы

- 1. Цель контроля надежности изделий?
- 2. Что такое риск поставщика и заказчика?
- 3. Какие ошибки возможны в процессе контроля надежности продукции?
 - 4. Какие методы контроля надежности используются на практике?
 - 5. В чем суть метода однократной выборки?

ПРИЛОЖЕНИЕ А

Таблица значений функции Лапласа (обязательное) $\Phi(z) = \frac{1}{\sqrt{2\pi}} \int\limits_{0}^{z} e^{-\frac{t^{2}}{2}} dt$

$$\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{0}^{z} e^{-\frac{t^{2}}{2}} dt$$

Z	Ф(z)	Z	Ф(z)	Z	Ф(z)	Z	Ф(z)	Z	Φ(z)	Z	Ф(z)
0,00	0,00000	0,50	0,19146	1,00		1,50	0,43319	2,00	0,47725	3,00	0,49865
0,01	0,00399	0,51	0,19497	1,01	0,34375	1,51	0,43448	2,02	0,47831	3,05	0,49886
0,02	0,00798	0,52	0,19847	1,02	0,34614	1,52	0,43574	2,04	0,47932	3,10	0,49903
0,03	0,01197	0,53	0,20194	1,03	0,34849	1,53	0,43699	2,06	0,48030	3,15	0,49918
0,04	0,01595	0,54	0,20540	1,04	0,35083	1,54	0,43822	2,08	0,48124	3,20	0,49931
0,05	0,01994	0,55	0,20884	1,05	0,35314	1,55	0,43943	2,10	0,48214	3,25	0,49942
0,06	0,02392	0,56	0,21226	1,06	0,35543	1,56	0,44062	2,12	0,48300	3,30	0,49952
0,07	0,02790	0,57	0,21566	1,07	0,35769	1,57	0,44179	2,14	0,48382	3,35	0,49960
0,08	0,03188	0,58	0,21904	1,08	0,35993	1,58	0,44295	2,16	0,48461	3,40	0,49966
0,09	0,03586	0,59	0,22240	1,09	0,36214	1,59	0,44408	2,18	0,48537	3,45	0,49972
0,10	0,03983	0,60	0,22575	1,10	0,36433	1,60	0,44520	2,20	0,48610	3,50	0,49977
0,11	0,04380	0,61	0,22907	1,11	0,36650	1,61	0,44630	2,22	0,48679	3,55	0,49981
0,12	0,04776	0,62	0,23237	1,12	0,36864	1,62	0,44738	2,24	0,48745	3,60	0,49984
0,13	0,05172	0,63	0,23565	1,13	0,37076	1,63	0,44845	2,26	0,48809	3,65	0,49987
0,14	0,05567	0,64	0,23891	1,14	0,37286	1,64	0,44950	2,28	0,48870	3,70	0,49989
0,15	0,05962	0,65	0,24215	1,15	0,37493	1,65	0,45053	2,30	0,48928	3,75	0,49991
0,16	0,06356	0,66	0,24537	1,16	0,37698	1,66	0,45154	2,32	0,48983	3,80	0,49993
0,17	0,06749	0,67	0,24857	1,17	0,37900	1,67	0,45254	2,34	0,49036	3,85	0,49994
0,18	0,07142	0,68	0,25175	1,18	0,38100	1,68	0,45352	2,36	0,49086	3,90	0,49995
0,19	0,07535	0,69	0,25490	1,19	0,38298	1,69	0,45449	2,38	0,49134	3,95	0,49996
0,20	0,07926	0,70	0,25804	1,20	0,38493	1,70	0,45543	2,40	0,49180	4,00	0,49997
0,21	0,08317	0,71	0,26115	1,21	0,38686	1,71	0,45637	2,42	0,49224	4,05	0,49997
0,22	0,08706	0,72	0,26424	1,22	0,38877	1,72	0,45728	2,44	0,49266	4,10	0,49998
0,23	0,09095	0,73	0,26730	1,23	0,39065	1,73	0,45818	2,46	0,49305	4,15	0,49998
0,24	0,09483	0,74	0,27035	1,24	0,39251	1,74	0,45907	2,48	0,49343	4,20	0,49999

0.25 0.09871 0.75 0.27337 1,25 0.39435 1,75 0.45994 2,50 0,49379 4,25 0,49999 0.26 0.10257 0.76 0.27637 1,26 0.39617 1,76 0,46080 2,52 0,49413 4,30 0,49999 0.27 0.10642 0.77 0.27935 1,27 0,39796 1,77 0,46164 2,54 0,49446 4,35 0,49999 0.28 0.11026 0.78 0,28230 1,28 0,39973 1,78 0,46246 2,56 0,49477 4,40 0,49999 0.29 0,11409 0.79 0,28524 1,29 0,40147 1,79 0,46327 2,58 0,49506 4,45 0,50000 0,31 0,12172 0,81 0,29103 1,31 0,40490 1,81 0,46485 2,62 0,49564 4,55 0,50000 0,32 0,12552 0.82 0,29389 1,32 0,40658 1,82 0,46532 2,64 0,49694												
0,27 0,10642 0,77 0,27935 1,27 0,39796 1,77 0,46164 2,54 0,49446 4,35 0,49999 0,28 0,11026 0,78 0,28230 1,28 0,39973 1,78 0,46246 2,56 0,49477 4,40 0,49999 0,29 0,11409 0,79 0,28524 1,29 0,40147 1,79 0,46327 2,58 0,49506 4,45 0,50000 0,30 0,11791 0,80 0,28814 1,30 0,40320 1,80 0,46407 2,60 0,49534 4,50 0,50000 0,31 0,12172 0,81 0,29103 1,31 0,40458 1,82 0,46562 2,64 0,49585 4,60 0,50000 0,32 0,12552 0,82 0,29389 1,32 0,40658 1,82 0,46562 2,64 0,49585 4,60 0,50000 0,33 0,12636 0,88 0,29955 1,34 0,404988 1,84 0,46712 2,68 0,4963	0,25	0,09871	0,75	0,27337	1,25	0,39435	1,75	0,45994	2,50	0,49379	4,25	0,49999
0,28 0,11026 0,78 0,28230 1,28 0,39973 1,78 0,46246 2,56 0,49477 4,40 0,49999 0,29 0,11409 0,79 0,28524 1,29 0,40147 1,79 0,46327 2,58 0,49506 4,45 0,50000 0,30 0,11791 0,80 0,28814 1,30 0,40320 1,80 0,46407 2,60 0,49534 4,50 0,50000 0,31 0,12172 0,81 0,29103 1,31 0,40490 1,81 0,46485 2,62 0,49560 4,55 0,50000 0,32 0,12552 0,82 0,29389 1,32 0,40658 1,82 0,46562 2,64 0,49585 4,60 0,50000 0,33 0,12930 0,83 0,29673 1,33 0,404824 1,83 0,46638 2,66 0,49609 4,65 0,50000 0,34 0,13307 0,84 0,29955 1,34 0,40988 1,84 0,46712 2,68 0,4963	0,26	0,10257	0,76	0,27637	1,26	0,39617	1,76	0,46080	2,52	0,49413	4,30	0,49999
0,29 0,11409 0,79 0,28524 1,29 0,40147 1,79 0,46327 2,58 0,49506 4,45 0,50000 0,30 0,11791 0,80 0,28814 1,30 0,40320 1,80 0,46407 2,60 0,49534 4,50 0,50000 0,31 0,12172 0,81 0,29103 1,31 0,40490 1,81 0,46485 2,62 0,49560 4,55 0,50000 0,32 0,12552 0,82 0,29389 1,32 0,40658 1,82 0,46562 2,64 0,49585 4,60 0,50000 0,33 0,12930 0,83 0,29673 1,33 0,40824 1,83 0,46638 2,66 0,49609 4,65 0,50000 0,34 0,13307 0,84 0,29955 1,34 0,40988 1,84 0,46712 2,68 0,49632 4,70 0,50000 0,35 0,13683 0,85 0,30234 1,35 0,41149 1,85 0,46784 2,70 0,49653	0,27	0,10642	0,77	0,27935	1,27	0,39796	1,77	0,46164	2,54	0,49446	4,35	0,49999
0,30 0,11791 0,80 0,28814 1,30 0,40320 1,80 0,46407 2,60 0,49534 4,50 0,50000 0,31 0,12172 0,81 0,29103 1,31 0,40490 1,81 0,46485 2,62 0,49560 4,55 0,50000 0,32 0,12552 0,82 0,29389 1,32 0,40658 1,82 0,46562 2,64 0,49585 4,60 0,50000 0,33 0,12930 0,83 0,29673 1,33 0,40824 1,83 0,46638 2,66 0,49609 4,65 0,50000 0,34 0,13307 0,84 0,29955 1,34 0,40988 1,84 0,46712 2,68 0,49632 4,70 0,50000 0,35 0,13683 0,85 0,30234 1,35 0,41149 1,85 0,46784 2,70 0,49653 4,75 0,50000 0,36 0,14058 0,86 0,30511 1,36 0,41309 1,86 0,46856 2,72 0,49674	0,28	0,11026	0,78	0,28230	1,28	0,39973	1,78	0,46246	2,56	0,49477	4,40	0,49999
0,31 0,12172 0,81 0,29103 1,31 0,40490 1,81 0,46485 2,62 0,49560 4,55 0,50000 0,32 0,12552 0,82 0,29389 1,32 0,40658 1,82 0,46562 2,64 0,49585 4,60 0,50000 0,33 0,12930 0,83 0,29673 1,33 0,40824 1,83 0,46638 2,66 0,49609 4,65 0,50000 0,34 0,13307 0,84 0,29955 1,34 0,40988 1,84 0,46712 2,68 0,49632 4,70 0,50000 0,35 0,13683 0,85 0,30234 1,35 0,41149 1,85 0,46784 2,70 0,49653 4,75 0,50000 0,36 0,14058 0,86 0,30511 1,36 0,41309 1,86 0,46856 2,72 0,49674 4,80 0,50000 0,37 0,14431 0,87 0,30785 1,37 0,41466 1,87 0,46926 2,74 0,49693	0,29	0,11409	0,79	0,28524	1,29	0,40147	1,79	0,46327	2,58	0,49506	4,45	0,50000
0,32 0,12552 0,82 0,29389 1,32 0,40658 1,82 0,46562 2,64 0,49585 4,60 0,50000 0,33 0,12930 0,83 0,29673 1,33 0,40824 1,83 0,46638 2,66 0,49609 4,65 0,50000 0,34 0,13307 0,84 0,29955 1,34 0,40988 1,84 0,46712 2,68 0,49632 4,70 0,50000 0,35 0,13683 0,85 0,30234 1,35 0,41149 1,85 0,46784 2,70 0,49653 4,75 0,50000 0,36 0,14058 0,86 0,30511 1,36 0,41309 1,86 0,46856 2,72 0,49674 4,80 0,50000 0,37 0,14431 0,87 0,30785 1,37 0,41466 1,87 0,46926 2,74 0,49693 4,85 0,50000 0,38 0,14803 0,88 0,31057 1,38 0,41621 1,88 0,46995 2,76 0,49711	0,30	0,11791	0,80	0,28814	1,30	0,40320	1,80	0,46407	2,60	0,49534	4,50	0,50000
0,33 0,12930 0,83 0,29673 1,33 0,40824 1,83 0,46638 2,66 0,49609 4,65 0,50000 0,34 0,13307 0,84 0,29955 1,34 0,40988 1,84 0,46712 2,68 0,49632 4,70 0,50000 0,35 0,13683 0,85 0,30234 1,35 0,41149 1,85 0,46784 2,70 0,49653 4,75 0,50000 0,36 0,14058 0,86 0,30511 1,36 0,41309 1,86 0,46856 2,72 0,49674 4,80 0,50000 0,37 0,14431 0,87 0,30785 1,37 0,41466 1,87 0,46926 2,74 0,49693 4,85 0,50000 0,38 0,14803 0,88 0,31057 1,38 0,41621 1,88 0,46995 2,76 0,49711 4,90 0,50000 0,39 0,15173 0,89 0,31594 1,40 0,41924 1,90 0,47128 2,80 0,49744	0,31	0,12172	0,81	0,29103	1,31	0,40490	1,81	0,46485	2,62	0,49560	4,55	0,50000
0,34 0,13307 0,84 0,29955 1,34 0,40988 1,84 0,46712 2,68 0,49632 4,70 0,50000 0,35 0,13683 0,85 0,30234 1,35 0,41149 1,85 0,46784 2,70 0,49653 4,75 0,50000 0,36 0,14058 0,86 0,30511 1,36 0,41309 1,86 0,46856 2,72 0,49674 4,80 0,50000 0,37 0,14431 0,87 0,30785 1,37 0,41466 1,87 0,46926 2,74 0,49693 4,85 0,50000 0,38 0,14803 0,88 0,31057 1,38 0,41621 1,88 0,46995 2,76 0,49711 4,90 0,50000 0,39 0,15173 0,89 0,31327 1,39 0,41774 1,89 0,47062 2,78 0,49728 4,95 0,50000 0,40 0,15542 0,90 0,31859 1,41 0,42073 1,91 0,47128 2,80 0,49744	0,32	0,12552	0,82	0,29389	1,32	0,40658	1,82	0,46562	2,64	0,49585	4,60	0,50000
0,35 0,13683 0,85 0,30234 1,35 0,41149 1,85 0,46784 2,70 0,49653 4,75 0,50000 0,36 0,14058 0,86 0,30511 1,36 0,41309 1,86 0,46856 2,72 0,49674 4,80 0,50000 0,37 0,14431 0,87 0,30785 1,37 0,41466 1,87 0,46926 2,74 0,49693 4,85 0,50000 0,38 0,14803 0,88 0,31057 1,38 0,41621 1,88 0,46995 2,76 0,49711 4,90 0,50000 0,39 0,15173 0,89 0,31327 1,39 0,41774 1,89 0,47062 2,78 0,49728 4,95 0,50000 0,40 0,15542 0,90 0,31594 1,40 0,41924 1,90 0,47128 2,80 0,49744 5,00 0,50000 0,41 0,15910 0,91 0,31859 1,41 0,42073 1,91 0,47193 2,82 0,49760	0,33	0,12930	0,83	0,29673	1,33	0,40824	1,83	0,46638	2,66	0,49609	4,65	0,50000
0,36 0,14058 0,86 0,30511 1,36 0,41309 1,86 0,46856 2,72 0,49674 4,80 0,50000 0,37 0,14431 0,87 0,30785 1,37 0,41466 1,87 0,46926 2,74 0,49693 4,85 0,50000 0,38 0,14803 0,88 0,31057 1,38 0,41621 1,88 0,46995 2,76 0,49711 4,90 0,50000 0,39 0,15173 0,89 0,31327 1,39 0,41774 1,89 0,47062 2,78 0,49728 4,95 0,50000 0,40 0,15542 0,90 0,31594 1,40 0,41924 1,90 0,47128 2,80 0,49744 5,00 0,50000 0,41 0,15910 0,91 0,31859 1,41 0,42073 1,91 0,47193 2,82 0,49760 0,42 0,42 0,16276 0,92 0,32121 1,42 0,42201 1,92 0,47257 2,84 0,49774 0,43 <td>0,34</td> <td>0,13307</td> <td>0,84</td> <td>0,29955</td> <td>1,34</td> <td>0,40988</td> <td>1,84</td> <td>0,46712</td> <td>2,68</td> <td>0,49632</td> <td>4,70</td> <td>0,50000</td>	0,34	0,13307	0,84	0,29955	1,34	0,40988	1,84	0,46712	2,68	0,49632	4,70	0,50000
0,37 0,14431 0,87 0,30785 1,37 0,41466 1,87 0,46926 2,74 0,49693 4,85 0,50000 0,38 0,14803 0,88 0,31057 1,38 0,41621 1,88 0,46995 2,76 0,49711 4,90 0,50000 0,39 0,15173 0,89 0,31327 1,39 0,41774 1,89 0,47062 2,78 0,49728 4,95 0,50000 0,40 0,15542 0,90 0,31594 1,40 0,41924 1,90 0,47128 2,80 0,49744 5,00 0,50000 0,41 0,15910 0,91 0,31859 1,41 0,42073 1,91 0,47193 2,82 0,49760 0,42 0,16276 0,92 0,32121 1,42 0,42220 1,92 0,47257 2,84 0,49774 0,43 0,16640 0,93 0,32381 1,43 0,42364 1,93 0,47320 2,86 0,49788 0,44 0,47364 0,95 0,32894 1,45 <t< td=""><td>0,35</td><td>0,13683</td><td>0,85</td><td>0,30234</td><td>1,35</td><td>0,41149</td><td>1,85</td><td>0,46784</td><td>2,70</td><td>0,49653</td><td>4,75</td><td>0,50000</td></t<>	0,35	0,13683	0,85	0,30234	1,35	0,41149	1,85	0,46784	2,70	0,49653	4,75	0,50000
0,38 0,14803 0,88 0,31057 1,38 0,41621 1,88 0,46995 2,76 0,49711 4,90 0,50000 0,39 0,15173 0,89 0,31327 1,39 0,41774 1,89 0,47062 2,78 0,49728 4,95 0,50000 0,40 0,15542 0,90 0,31594 1,40 0,41924 1,90 0,47128 2,80 0,49744 5,00 0,50000 0,41 0,15910 0,91 0,31859 1,41 0,42073 1,91 0,47193 2,82 0,49760 0,42 0,16276 0,92 0,32121 1,42 0,42220 1,92 0,47257 2,84 0,49774 0,43 0,16640 0,93 0,32381 1,43 0,42364 1,93 0,47320 2,86 0,49788 0,44 0,17003 0,94 0,32639 1,44 0,42507 1,94 0,47381 2,88 0,49801 0,45 0,17364 0,95 0,32894 1,45 0,42647 1,95 0,47441	0,36	0,14058	0,86	0,30511	1,36	0,41309	1,86	0,46856	2,72	0,49674	4,80	0,50000
0,39 0,15173 0,89 0,31327 1,39 0,41774 1,89 0,47062 2,78 0,49728 4,95 0,50000 0,40 0,15542 0,90 0,31594 1,40 0,41924 1,90 0,47128 2,80 0,49744 5,00 0,50000 0,41 0,15910 0,91 0,31859 1,41 0,42073 1,91 0,47193 2,82 0,49760 0,42 0,16276 0,92 0,32121 1,42 0,42220 1,92 0,47257 2,84 0,49774 0,43 0,16640 0,93 0,32381 1,43 0,42364 1,93 0,47320 2,86 0,49788 0,44 0,17003 0,94 0,32639 1,44 0,42507 1,94 0,47381 2,88 0,49801 0,45 0,17364 0,95 0,32894 1,45 0,42647 1,95 0,47441 2,90 0,49813 0,46 0,17724 0,96 0,33147 1,46 0,42785 1,96 0,47500 2,92 0,49825	0,37	0,14431	0,87	0,30785	1,37	0,41466	1,87	0,46926	2,74	0,49693	4,85	0,50000
0,40 0,15542 0,90 0,31594 1,40 0,41924 1,90 0,47128 2,80 0,49744 5,00 0,50000 0,41 0,15910 0,91 0,31859 1,41 0,42073 1,91 0,47193 2,82 0,49760 0,42 0,16276 0,92 0,32121 1,42 0,42220 1,92 0,47257 2,84 0,49774 0,43 0,16640 0,93 0,32381 1,43 0,42364 1,93 0,47320 2,86 0,49788 0,44 0,17003 0,94 0,32639 1,44 0,42507 1,94 0,47381 2,88 0,49801 0,45 0,17364 0,95 0,32894 1,45 0,42647 1,95 0,47441 2,90 0,49813 0,46 0,17724 0,96 0,33147 1,46 0,42785 1,96 0,47500 2,92 0,49825	0,38	0,14803	0,88	0,31057	1,38	0,41621	1,88	0,46995	2,76	0,49711	4,90	0,50000
0,41 0,15910 0,91 0,31859 1,41 0,42073 1,91 0,47193 2,82 0,49760 0,42 0,16276 0,92 0,32121 1,42 0,42220 1,92 0,47257 2,84 0,49774 0,43 0,16640 0,93 0,32381 1,43 0,42364 1,93 0,47320 2,86 0,49788 0,44 0,17003 0,94 0,32639 1,44 0,42507 1,94 0,47381 2,88 0,49801 0,45 0,17364 0,95 0,32894 1,45 0,42647 1,95 0,47441 2,90 0,49813 0,46 0,17724 0,96 0,33147 1,46 0,42785 1,96 0,47500 2,92 0,49825	0,39	0,15173	0,89	0,31327	1,39	0,41774	1,89	0,47062	2,78	0,49728	4,95	0,50000
0,42 0,16276 0,92 0,32121 1,42 0,42220 1,92 0,47257 2,84 0,49774 0,43 0,16640 0,93 0,32381 1,43 0,42364 1,93 0,47320 2,86 0,49788 0,44 0,17003 0,94 0,32639 1,44 0,42507 1,94 0,47381 2,88 0,49801 0,45 0,17364 0,95 0,32894 1,45 0,42647 1,95 0,47441 2,90 0,49813 0,46 0,17724 0,96 0,33147 1,46 0,42785 1,96 0,47500 2,92 0,49825	0,40	0,15542	0,90	0,31594	1,40	0,41924	1,90	0,47128	2,80	0,49744	5,00	0,50000
0,43 0,16640 0,93 0,32381 1,43 0,42364 1,93 0,47320 2,86 0,49788 0,44 0,17003 0,94 0,32639 1,44 0,42507 1,94 0,47381 2,88 0,49801 0,45 0,17364 0,95 0,32894 1,45 0,42647 1,95 0,47441 2,90 0,49813 0,46 0,17724 0,96 0,33147 1,46 0,42785 1,96 0,47500 2,92 0,49825	0,41	0,15910	0,91	0,31859	1,41	0,42073	1,91	0,47193	2,82	0,49760		
0,44 0,17003 0,94 0,32639 1,44 0,42507 1,94 0,47381 2,88 0,49801 0,45 0,17364 0,95 0,32894 1,45 0,42647 1,95 0,47441 2,90 0,49813 0,46 0,17724 0,96 0,33147 1,46 0,42785 1,96 0,47500 2,92 0,49825	0,42	0,16276	0,92	0,32121	1,42	0,42220	1,92	0,47257	2,84	0,49774		
0,45 0,17364 0,95 0,32894 1,45 0,42647 1,95 0,47441 2,90 0,49813 0,46 0,17724 0,96 0,33147 1,46 0,42785 1,96 0,47500 2,92 0,49825	0,43	0,16640	0,93	0,32381	1,43	0,42364	1,93	0,47320	2,86	0,49788		
0,46 0,17724 0,96 0,33147 1,46 0,42785 1,96 0,47500 2,92 0,49825	0,44	0,17003	0,94	0,32639	1,44	0,42507	1,94	0,47381	2,88	0,49801		
	0,45	0,17364	0,95	0,32894	1,45	0,42647	1,95	0,47441	2,90	0,49813		
0.47 0.18082 0.97 0.33398 1.47 0.42922 1.97 0.47558 2.94 0.49836	0,46	0,17724	0,96	0,33147	1,46	0,42785	1,96	0,47500	2,92	0,49825		
0,47 0,10002 0,77 0,33370 1,47 0,42722 1,77 0,47330 2,74 0,47030	0,47	0,18082	0,97	0,33398	1,47	0,42922	1,97	0,47558	2,94	0,49836		
0,48 0,18439 0,98 0,33646 1,48 0,43056 1,98 0,47615 2,96 0,49846	0,48	0,18439	0,98	0,33646	1,48	0,43056	1,98	0,47615	2,96	0,49846		
0,49 0,18793 0,99 0,33891 1,49 0,43189 1,99 0,47670 2,98 0,4	0,49	0,18793	0,99	0,33891	1,49	0,43189	1,99	0,47670	2,98	0,4		

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

Основная литература

- 1. Надежность и ремонт машин : [учебник для студентов высших учебных заведений]/ под ред. проф. В. В. Курчаткина. -М: Колос, 2000. -775 с.
- 2. Острейковский В. А. Теория надежности : [учебник для студентов высших учебных заведений]/ В. А. Острейковский. -М.: Высшая школа, 2003. -462 с.
- 3. Шишмарев В.Ю. Надежность технических систем: [учебник для студентов высших учебных заведений]/В.Ю. Шишмарев.-М.: Академия, 2010.-304 с.

Дополнительная литература

- 1. Труханов В.М. Надежность технических систем/ В.М. Труханов.-М.: Машиностроение, 2003.-320 с.
- 2. Половко А.М., Гуров С.В. Основы теории надежности. Практикум.- СПб.: БХВ-Петербург, 2006.-560 с.
- 3. Ермолов Е.С. Основы надежности сельскохозяйственной техники / Е.С.Ермолов, В.М. Кряжков, В.Е. Черкун. М.: Колос, 1982. 143 с.
- 4. ГОСТ 23.002-78. Обеспечение износостойкости изделий. Трение изнашивание и смазка. Термины и определения. М.: изд. Стандартов, 1985.
- 5. ГОСТ 27.002-83. Надежность в технике. Термины и определения. М.:изд. Стандартов, 1985.
- 6. ОСТ 70.28.-82. Испытание сельскохозяйственной техники. Надежность. Сбор и обработка информации. – М.: Госкомсельхозтехника СССР, 1983.

надежность технических систем