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1 Introduction
Throughout the following, G always denotes a finite group.

• Let H be a subgroup group of G. We have
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for any x 
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 G. We call H to be a TI-subgroup of G if 
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 For example, if H is normal in G or if H is of a prime order, then H is a TI-subgroup.

• A topic of some interest is to investigate the finite groups in which certain subgroups are assumed to be TI-subgroups. In [7], Walls classified the finite groups all of whose subgroups are TI-subgroups. In [6] and [2], Guo, Li and Flavell classified the finite groups whose abelian subgroups are TI-subgroups.

• The aim of this paper is to study the finite AQTI-groups, that is, all of whose abelian subgroups are QTI (that means quasi-trivialintersection)-subgroups. We obtain a classification of the AQTI-groups in Theorem 3.3 (nilpotent case) and Theorem 4.3 (nonnilpotent case).

Definition 1.1 A subgroup H of G is called a QTI-subgroup if 
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Clearly a TI-subgroup is a QTI-subgroup. However, the converse is not true.

Example 1.2 Let V be an elementary abelian 3-group of order 35 and H be a subgroup of GL(5, 3) of order 
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11

. Let G = HV, where H acts on V in a natural way. 

Since 11 does not divides 3
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 − 1 for any a < 5, the actions of H and its nonidentity subgroups on V are irreducible and fixed-point-free. It follows that N
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(W) = V for any proper subgroup W of V and that C
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, and therefore W is a QTI-subgroup of G. In fact, it is not difficult to see that all abelian subgroups of G are QTI-subgroups, and therefore G is an AQTI-group. 

Let W
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 be a subgroup of V of order 3
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 is not a TI-subgroup.

QUESTION A Under which additional condition P, a QTI-subgroup is necessary a TI-subgroup? that is, QTI-subgroup+ P?= TI-subgroup.

2 Fundamental results about AQTI-group

Lemma 2.1  Let G be an AQTI-group. Then the following statements hold.

(1) Any subgroup of G is again an AQTI-group.

(2) For any abelian subgroup H of G, if  H 
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  Z(G) > 1, then H is normal in G.

(3) For any 
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Proof    (1) and (2) are clear.

(3) For any cyclic subgroup 
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, A is an abelian subgroup of an AQTI group C
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(x), and so A is normal in C
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(x) (see (2)). It follows that all cyclic subgroups (and so all subgroups) of 
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• Recall that a CN-group is a group in which the centralizer of any nonidentity element is nilpotent. Now the above lemma implies that an AQTI group is a CN-group.

For any finite group G, we define its prime graph Г(G) (see [8]) as follows: Whose vertex set is 
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(G), and two vertices p, q are jointed by an edge if G has an element of order pq. If  
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 is a vertex set of a connected component of  Г(G), then  
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 is called a prime component of G.

Lemma 2.2 ([2, Theorem 2.2]) Let G be a CN-group and 
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  a prime component of G. Then G possesses a nilpotent Hall 
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-subgroup H, and any 
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-subgroup is contained in some G-conjugate of H, furthermore H is a TI-subgroup if in addition 
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In particular, if G is a nonnilpotent AQTI-group, then Г(G) is disconnected.

• The original proof of above lemma is elementary.

3 Nilpotent case

Recall that a Hamiltonian group is a nonabelian group in which all subgroups are normal. It is known that a Hamiltonian group is a direct product of Q
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, an elementary abelian 2-group and an abelian group of odd order. For a p-group G, we put 
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Theorem 3.1  For a finite p-group G, the following statements are equivalent.

(1) All subgroups of G are TI-subgroups.

(2) All abelian subgroups of G are TI-subgroups.

(3) All abelian subgroups of G are QTI-subgroups, ie., G is an AQTI-group.

(4) G is one of the following p-groups:

(4.1) G is an abelian p-group.

(4.2) G is a Hamiltonian 2-group, that is a product of Q
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and an elementary abelian 2-group.

(4.3) G is the central product of Q
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 and D
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;

(4.4) G/Z(G) is of order p2, Z(G) is cyclic and 
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 is the only minimal normal subgroup of G.

REMARK  The object of the paper [6] is to show the following: 

The finite p-groups all of whose abelian subgroups are TI-subgroups, are just the groups of types (4.1)-(4.4).

• Our arguments (of Theorem 3.1) are much shorter than those in [6].

Proof ... (after some trivial arguments), we need only to show (3) implying (4). Suppose that all abelian subgroups of G are normal. Then all subgroups of G are normal, and so G is of type (4.1) or type (4.2).

In what follows

• we assume that G has an abelian but not normal subgroup, and we will show that G is of type (4.3) or type (4.4).

• Observe first that for any nontrivial abelian subgroup A of G, A is normal in G iff  
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 (see Lemma 2.1(2)).

Step 1. Z(G) is cyclic.
Suppose that Z(G) is not cyclic and let A be any abelian subgroup of G. If 
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, then A is normal in G. If 
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, then AU, AV are normal in G where U,  
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 are distinct subgroups of Z(G), and so A = AU 
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 AV is normal. This implies that all abelian subgroups are normal, which contradicts our assumption.

Step 2. Let Z be the unique minimal normal subgroup of G. Then G/Z is abelian, and Z = G
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Let A/Z be any cyclic subgroup of G/Z. Then A is normal in G because A is abelian with  
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. It follows that all subgroups of G/Z are normal.

Suppose G/Z is nonabelian. Then G is a Hamiltonian 2-group, and so 
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. Clearly T is normal in G and so 
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 is normal in G. Since Z is the unique minimal normal subgroup of G,  
[image: image56.wmf]Z

T

³

'

, and this implies that 
[image: image57.wmf]4

/

'

=

T

T

. Now applying [3, Ch3, theorem, 11.9], we conclude that Z(T) = Z. By [3, Page 94, exercise 58], we get a contradiction. Thus G/Z is abelian, and so 
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Step 3. Final proof.

Since G
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= Z is the unique minimal normal subgroup of G, it follows by [5, Lemma 12.3] that G/Z(G) is elementary abelian and that all nonlinear irreducible complex characters of G have degree 
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Since G has an abelian but not normal subgroup A and A
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Z(G) = 1, we can find an element t such that 
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. Then H =: CG(t) < G. ...... It is easy to see that H is a maximal subgroup of G and that all abelian subgroups of H are normal (and so H is abelian or 
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Suppose that H is abelian. Since |G : H| = p, all nonlinear irreducible complex characters of G have degree p, and this implies that |G/Z(G)| = p2, thus G is of type (4.4).

Suppose that 
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. Then G possesses an abelian subgroup of index 4. It follows that all nonlinear irreducible complex characters of G have degree 2 or 4. Thus either |G/Z(G)| = 4 and then G is of type (4.4), or |G/Z(G)| = 24. Let us investigate the case when |G/Z(G)| = 24. For this case, ...... we can prove that G is an extraspecial 2-group of order 25 (Remark. Thus 
[image: image65.wmf]8

8

D

D

G

*

@

 or 
[image: image66.wmf]8

8

D

D

*

) and that the case 
[image: image67.wmf]8

8

D

D

G

*

=

 is impossible. And hence G is a central product of  D8 and Q8, ie., G is of type (4.3).

Lemma 3.2 Let G be a finite group. Then G is an AQTI-subgroup iff G satisfies the following conditions:

(1) G is a CN-group,

(2) Let 
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  be any prime component of G and let M be a Hall 
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- subgroup of G. Then either M is one of the p-groups listed in theorem 3.1, or M is abelian, or M is a Hamiltonian group.

Applying Theorem 3.1 and Lemma 3.2, we obtain the following result.

Theorem 3.3 Let G be a nilpotent group. Then G is an AQTI-group if and only if one of the following holds.

(1) G is abelian.

(2) G is a Hamiltonian group.

(3) G is of type (4.3) or (4.4) in Theorem 3.1.

The proof of Lemma 3.2  Suppose that G is an AQTI-group. By Lemma 2.2, G is a CN-group, and G possesses a nilpotent Hall  
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- subgroup M for any prime component 
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 of G. Clearly M is again an AQTI-subgroup, and we need to show that if  
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 then all subgroups of M are normal in M. Assume this is not true. Write M = P × Q, where Q is a nontrivial p
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 has an abelian but not normal subgroup P1. Let 
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. As P1 × Z(Q) is a QTI-subgroup of M, M = CM(x) 
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 NM(P1 × Z(Q)) = NP(P1) × Q, and this implies that P1 is normal in P, a contradiction.

Suppose conversely that G satisfies the conditions of Lemma 3.2. Let H be an abelian subgroup of G and 
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. Let p be a prime divisor of |H| and let 
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 be a prime component containing p of G. By Lemma 2.2 we may assume CG(x)  
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 2, then M is a Hamiltonian group or an abelian group, thus H is normal in M, and so CG(x) = CM(x) 
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 M = NM(H) 
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 NG(H). If |
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| = 1, then M is an AQTI-group of prime power order, so CG(x) = CM(x) 
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 NM(H) 
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 NG(H). Thus H is a QTI-subgroup of G, and therefore G is an AQTI-group. 

4 Nonnilpotent case

If G = HN is a Frobenius group with a kernel N and a complement H, then we say that H acts frobeniusly on N. In this case, we know that N is nilpotent and any Sylow subgroup of H is either a cyclic group or a generalized quaternion group, and that 
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(H), 
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(N) are just two prime components of G (see [8]).

If there are M, N 
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 G such that G/N is a Frobenius group with M/N as its kernel and M is a Frobenius group with N as its kernel, then G is called a 2-Frobenius group, and such a 2-Frobenius group is denoted by Frob2(G,M,N). In this case, we know that G is solvable, and that 
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(N) are just two prime components of G (see [8]).

Lemma 4.1 Let G = HN be a Frobenius group with a complement H and a kernel N. If G is an AQTI-group, then the following statements hold.

(1) H is either a cyclic group or a product of Q8 with a cyclic group of odd order.

(2) N is either an abelian group or of type (4.4) listed in Theorem 3.1.

Proof Since G is a Frobenius group, Г(G) has just two connected components with 
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(H), 
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(N) as its vertex sets.

(1) If H is nonnilpotent, then Lemma 2.2 implies that Г(H) is disconnected, and then Г(G) has at least three connected components, a contradiction. Thus H is nilpotent. If P
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Syl(H) is not cyclic, then P is a generalized quaternion group, and then P
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= Q8 by Theorem 3.1. The result follows.

(2) Since N is the Frobenius kernel, N is nilpotent. Assume that N is nonabelian and let P be a nonabelian Sylow p-subgroup of N. Then P is one of the three types listed in Theorem 3.1. Assume that 
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. Then V1(P) is a normal subgroup of G of order 2, which is clearly impossible. Assume that P is the central product of Q8 and D8. Then Z(P) lies in Z(G), a contradiction. Thus P is of type (4.4) in Theorem 3.1, and then N = P by Theorem 3.3. 

Lemma 4.2 Let G = Frob2(G,H,K). If G is an AQTI-subgroup, then G is isomorphic to symmetric group S4.

Proof  Note that G is solvable with just two prime components 
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, and that G has a nilpotent Hall 
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- subgroup W (see Lemma 2.2). Clearly K is the Fitting subgroup of G, thus CW(K) 
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 CG(K) 
[image: image103.wmf]£

 K, and so W > K > Z(W).

Let 
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(G/H) and P be a Sylow p-subgroup of W. Since K >Z(W)
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 is nontrivial. Let G1 > P be a  
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{p}- Hall subgroup of G. It follows that G1 = Frob2(G1,H 
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 G1, P 
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 K). Assume that G1 < G. Then induction yields that 
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Syl2(S4) is isomorphic to D8, and then W = P by Theorem 3.3, so 
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 as wanted. In what follows, we assume that 
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= {p}. Then W is one of the nonabelian p groups listed in Theorem 3.1.

Case 1. Assume that 
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. As W > K > Z(W), K is a product of Z4 and an elementary abelian 2-group. It follows that 
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 with |V1(K)| = 2, a contradiction.

Case 2. Assume that W is the central product of Q8 and D8. As W > K > Z(W), |K| 
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 {4, 8, 16}.

If K is abelian, then K 
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 {Z4 × Z2,Z4,Z2 × Z2} (see [3, Ch3, Theorem 13.8]). Now K/Ф(K) = Z2 or Z2 × Z2, it follows that G/K 
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 Aut(K/Ф(K)) 
[image: image119.wmf]£

 S3, then |P|
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 16, a contradiction.

If K is nonabelian and of order 16, then K
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Q8×Z2 or |K/Z(K)| = 4 with Z(K) 
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Z4. For the first case, let Z = V1(K); and for the second case, let Z = V1(Z(K)). Then Z is normal in G with |Z| = 2, a contradiction.

If K is nonabelian and of order 8, then K
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Q8 or D8, and then G/K
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Aut(K/Ф(K)) = Aut(Z2 × Z2) = S3, thus |P| = 16, a contradiction.

Case 3. Assume that W/Z(W) 
[image: image125.wmf]@

 Zp × Zp and Z(W) is cyclic. Then K is abelian with |W : K| = |K : Z(W)| = p. Note that G = NG(U)H = NG(U)K by Frattini argument, where U is a Hall 
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K = NK(U) = 1, and so NG(U) 
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 G/K is a Frobenius group with a complement of order p.

Suppose K is not elementary abelian. Then V1(K) is a nontrivial cyclic normal subgroup of G. Let us consider G1 = NG(U)V1(K). We see that V1(K) = Fit(G1), and NG(U) 
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Aut(V1(K)) is abelian, a contradiction.

Hence K is elementary abelian, and in particular Z(W) 
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 Zp. Now NG(U) 
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Aut(K) = Aut(Zp × Zp) = GL(2, p). Note that if p > 2, then it is easy to check that GL(2, p) has no subgroup which is a Frobenius group with a complement of order p. This implies that K
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Z2 × Z2, and hence NG(U) 
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S3, and G
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S4. 

Theorem 4.3 Let G be a nonnilpotent group. Then G is an AQTI-subgroup iff G is one of the following groups.

(1) G = HN is a Frobenius group with a complement H and a kernel N, where N is abelian, and H is either a cyclic group or a product of Q8  with a cyclic group of odd order.

(2) G = HN is a Frobenius group with a complement H and a kernel N, where H is a cyclic subgroup of Zp-1 and N is a p-group of the type (4.3) in Theorem 3.1.

(3) G
[image: image135.wmf]@

S4.

(4) G 
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 L2(q), where q = 5, 7, 9.

Proof  Suppose that G
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{S4,L2(5),L2(7),L2(9)}. Then it is easy to check that G is an AQTI-group. Suppose that G is a Frobenius group of type (1) or (2). We also conclude by Lemma 3.2 that G is an AQTI-group.

Suppose that G is a nonnilpotent AQTI-group. Then the prime graph Г(G) is disconnected (see Lemma 2.2).

Assume that G is solvable. It is well known that G is a Frobenius or 2-Frobenius group (see [8]), and then Lemma 4.1 and Lemma 4.2 imply that G is of type (1) or type (2).

In what follows, we assume that G is a nonsolvable AQTI-group.

Let N = Sol(G), the maximal normal solvable subgroup of G. It follows by [8] that G has a normal series N 
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 H 
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 G such that N and G/H are 
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-groups and H/N is a nonabelian simple group, where 
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 is the prime component of G containing 2. Furthermore, N = Sol(G) = Fit(G), G/N 
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 Aut(H/N).

Let P1 be a nilpotent Hall 
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-subgroup of G (see Lemma 2.2), and P = P1
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H.

Claim 1. If N > 1, then 
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 = {2}.
Suppose that N > 1 and |
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2. By Lemma 2.2 P1 is a TI-subgroup of G. Since N
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P1 is a nontrivial normal subgroup of G, P1 is normal in G, so G is solvable, a contradiction. Thus |
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| = 1 and so 
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 = {2}.

Claim 2. N = 1.

Suppose that N > 1 and let E be any normal subgroup of G with 1 < E 
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 N. By claim 1, 
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= {2} and P is a 2-group.

Assume that CG(E)N > N. Since H/N is simple and is a unique minimal normal subgroup of G/N, CG(E)N
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H. Then any odd order subgroup of H acts trivially on E, which is clearly impossible. Hence CG(E)
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N, and in particular P > N > Z(P).

Now P is one of the 2-groups listed in Theorem 3.1. Arguing as in the proof of Lemma 4.2, we can find a normal subgroup E of G with 1 < E
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N and E 
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 Z2 × Z2. It follows that G/CG(E) 
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 Aut(E) is solvable, and so G/N is solvable because CG(E) 
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 N, a contradiction.

Claim 3. H 
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 L2(q), where q = 5, 7, 9.

As N = 1, H is a nonabelian simple group. Since H is an AQTI-group, by Lemma 2.1(3) H is a CN-group. Note that the only simple nonabelian CN-groups are Sz(q), L3(4), L2(9), and L2(p) where p is a Fermat or a Mersenne prime (see [4, ChXI, Remark 3.12]).

Assume that H _= Sz(q). Then |P| = q2, q = 22m+1, where P0 _= _(P) = Z(P) is an elementary abelian group of order q. Checking the 2-groups listed in Theorem 3.1, we get a contradiction.

Assume that H
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L3(4). Then |P| = 26, and Z(P) 
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 Z2 × Z2. Checking the 2-groups listed in Theorem 3.1, we get a contradiction.

Assume that H 
[image: image162.wmf]@

 L2(p), where p is a prime and p = 2m + 1 or 2m − 1. Then P is a dihedral group of order 2m (see [3, ChII, Theorem 8.27]). Checking the 2-groups listed in Theorem 3.1, we conclude that P 
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 Z2 × Z2 or D8. Thus either p = |P| + 1 = 5 and then H 
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 L2(5), or p = |P| − 1 = 7 and then H 
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 L2(7).
Claim 4. G = H 
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 L2(q), where q = 5, 7, 9.

It suffices to show that G = H. Otherwise, H < G 
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 Aut(H). We will apply [1] to get a contradiction.

Assume that H 
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 A5 (or L2(7)). Then G 
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 S5 (or PGL(2, 7)) has an element of order 6, so 2, 3 lie in the same prime component of G. However neither S5 nor PGL(2, 7) has a nilpotent Hall {2, 3}-subgroup, a contradiction.

Assume that H 
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 L2(9). Then G contains a subgroup which is isomorphic to L2(9) : 21, L2(9) : 22 or L2(9) : 23 (see [1]). If  L2(9) : 21
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G, then G has an element of order 6 but has no nilpotent Hall {2, 3}- subgroup, a contradiction. If L2(9) : 22 
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 G, then G has an element of order 10 but has no nilpotent Hall {2, 5}-subgroup, a contradiction. If L2(9) : 23 
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 G, then a Sylow 2-subgroup U of L2(9) : 23 has order 16 and |Z(U)| = 2, and we also get a contradiction by checking the 2-groups listed in Theorem 3.1. Thus G = H as desired.

QUESTION B Let H be a subgroup of a finite group G. Clearly
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We call H is a CTI-subgroup of G if 
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 G. Our question is to classify the finite p-groups (or finite groups) all of whose subgroups (or abelian subgroups) are CTI-subgroups.

QUESTION C What can we say about the finite groups with no nontrivial TI-subgroup. Here a trivial TI-subgroup is a normal subgroup or a subgroup of prime order.
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