ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ СУШКИ РАПСА

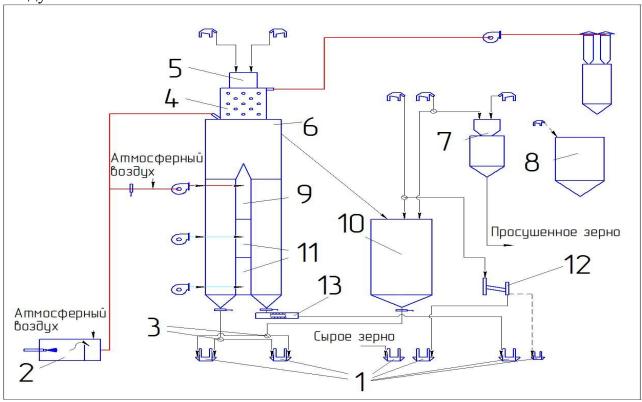
Урманов А.И., Резчиков В.А.

Московский государственный университет пищевых производств, Москва, Россия

The article describes the technology of increasing the efficiency of rapeseed drying.

Рапс является одной из ценных масличных и кормовых культур. В связи с неблагоприятными природно-климатическими условиями в регионах нашей страны, производящих рапс, и преобладающего метода прямого комбайнирования, средняя влажность рапса, поступающего на предприятия, варьирует в диапазоне 20-30%. Для сохранения основных товарных качественных характеристик рапса, необходимо обеспечить его своевременную сушку до критической влажности не более 7-8%.

В настоящее время в сельскохозяйственной практике рапс, как кормовая и техническая культура, приобретает все большую значимость. Рапсовый шрот, жмых и зеленая масса рапса являются ценным высокобелковым кормом. Посевы рапса позволяют улучшить структуру и плодородие почвы, а также уменьшить засоренность полей. Кроме этого, рапс является источником высококачественного пищевого и технического масла, которые широко мыловаренной, текстильной, металлургической, применяются полиграфической, кожевенной отраслях, a также ДЛЯ производства экологически безопасного биотоплива[1].


Физико-химические и биохимические изменения в рапсе при тепловом воздействии (сушке), такие как расщепление тиогликозидов до токсичных веществ, например изотиоцианатов, интенсификации процессов прогоркания масла и скопления на стенках камеры нагрева масличной пыли, обуславливают необходимость ведения технологического процесса сушки при более мягких режимах, по сравнению с зерном злаковых культур[2].

В настоящее время сушка зерна рапса в нашей стране преимущественно осуществляется на шахтных прямоточных, колонковых (модульных) и башенных (бункерных) зерносушилках, не позволяющих обеспечить снижение начальной влажности зерна до установленных значений за один пропуск через сушилку.

Применение рециркуляционно-квазиизотермической технологии сушки рапса позволяет обеспечить снижение любой начальной влажности сырого зерна до установленных значений за один пропуск через сушилку.

Технологическая схема производственной установки представлена на рис.1. Рассматриваемый способ рециркуляционно-квазиизотермической сушки состоит из следующих этапов: сырое зерно рапса, прошедшее предварительную очистку, распределяется по рециркуляционным нориям, при помощи которых осуществлялся подача в предсушильный бункер (5), расположенный над камерой предварительного нагрева зерна (4). В камере предварительного нагрева зерна зерна зерна

высокотемпературным агентом сушки. Далее зерно поступает в бункер (6), где происходит теплообмен и частичное выравнивание влажности между сухим (рециркулирующим) и сырым зерном. После тепловлагообменника зерно распределяется по двум шахтам: рециркуляционной и охладительной, в верхней зоне которых (9) осуществлялается сушка зерна рапса агентом сушки температурой около 80°C, при условиях близких к квазиизотермическим. Во второй третей рециркуляционной И охладительной шахт зонах (11)происходит охлаждение зерна путём продувания его воздухом.

1 — нории; 2 — топка; 3 — делители потока; 4 — камера нагрева зерна; 5 —надсушильный бункер; 6 —тепловлагообменник; 7 —порционные весы; 8 —отходный бункер; 9 — зона сушки зерна; 10 — оперативный бункер влажного зерна; 11 —зоны охлаждения зерна; 12 — сепаратор; 13 —скребковый транспортёр.

Рис.1. Схема рециркуляционно-изотермической зерносушилки с предварительным нагревом зерна в падающем слое.

С целью определения наиболее оптимальных режимов сушки зерна рапса по рассматриваемой технологии был проведен ряд лабораторных и производственных испытаний, результаты которых представлены в таблице.

Производственные испытания проводились на модернизированной шахтной зерносушильной установке непрерывного действия с предварительным нагревом зерна в заторможенно-падающем слое типа «Целинная» с дополнительным подводом тепла в верхнюю зону сушки.

Опыты проводились на производственной сушильной установке при режимах, признанных наиболее рациональными по результатам лабораторных исследований, в соответствии с методическими рекомендациями ВНИИЗ: максимальная температура нагрева зерна рапса составила 60°C, температура сушильного агента в зоне квазиизотермической сушки – 80°C и его скорость –

0,4-0,5 м/сек, удельная подача охлаждающего воздуха — от 2 до 4 м3/кг сух.зер., температура сушильного агента в зоне предварительного нагрева — 260-300°C [3]. Опыты проводились при различной начальной влажности зерна.

Как показали производственные испытания, подача сушильного агента в верхнюю зону сушки повышает производительность зерносушильной установки в среднем на 24%. При этом кратность смешения сырого и рециркулирующего зерна рапса снижается более чем в два раза, а удельный расход топлива остаётся неизменным (в сравнении с рециркуляционной сушкой) и составляет ориентировочно 9,5-10 кг условного топлива на плановую тонну.

Поскольку процесс сушки характеризуется большим количеством параметров (фактров), задачу было целесообразно ограничить оценкой влияния на основные технологические (кислотное число) и семенные (всхожесть и энергия прорастания) достоинства просушенного зерна рапса.

Таблица. Результаты исследований воздействия рециркуляционной и рециркуляционно-квазиизотермической сушки зерна на качественные характеристики рапса ярового.

квазиизотермической сушки зерна на качественные характеристики ранса ярового.												
Ŋō	Влажность зерна, %		Производительность, пл. т/час	Температура сушильного агента, °С		Кратность рециркуляции	Кислотное число, мг КОН/1г на АСВ		Всхожесть, %		Энергия прорастания, %	
	Начальная	Конечная	Производ пл.	На входе в камеру нагрева	На входе в верхнюю зону	Кратность р	До сушки	После сушки	До сушки	После	До сушки	После сушки
Рециркуляционная сушка												
1	15,4	6,8	22,7	300	-	2,9	3,76	2,96	65	55	57	49
2	22,0	7,0	22,5	300	-	6,8	3,31	2,9	56	38	44	29
3	27,0	6,8	21,9	300	-	7,3	3,5	2,91	45	26	41	24
Сред.	21,5	6,9	22,4	300	-	5,7	3,52	2,92	55	40	47	34
Рециркуляционная квазиизотермическая сушка												
1	15,1	7,2	27,6	260	80	0,5	3,81	2,9	63	57	56	51
2	23,5	6,9	27,7	260	80	3,0	3,32	2,82	53	42	41	31
3	25,0	6,8	28,2	260	80	2,8	3,5	2,88	46	33	41	29
Сред.	21,2	7,0	27,8	260	80	2,1	3,54	2,87	54	44	46	37

Исследования показали, что при принятых режимных параметрах в рециркуляционной 15-27% случае сушки зерно рапса влажностью высушивается до сухого состояния при кратности смешения сухого и рециркулирующего зерна 3-7,5, а в случае сушки того же зерна при квазиизотермических режимах – при кратности смешения 0,5-3. Это даёт возможность сократить затраты на электроэнергию, связанные дополнительным перемещением зерна, а также способствуют снижению его травмирования в процессе транспортировки и сохранения основных товарных и семенных достоинств зерна за счёт минимизации повторного термического воздействия на зерновку. В случае рециркуляционной сушки зерна рапса всхожесть и энергия прорастания снижаются в среднем на 30%, а кислотное число снижается на 17%. В случае сушки зерна при квазиизотермическом режиме снижение всхожести и энергии прорастания составляет около 20%, снижение кислотного числа – 19%.

Во всех опытах, проведенных на производственных установке, отмечалось хорошее охлаждение зерна — температура рапса на выходе из шахты охлаждения не превышала температуру атмосферного воздуха на 1-2°С. Такая эффективность охлаждения достигается за счёт увеличения удельной подачи охлаждающего воздуха до 3,5-4 м3/кг сух.зер.

Таким образом, проведенные в лабораторных и производственных элементов условиях исследования основных И закономерностей рециркуляционно-квазиизотермического способа сушки зерна рапса показали, что предложенный способ сушки зерна рапса обеспечивает значительную интенсификацию процесса сушки И гарантирует хорошее качество высушиваемого зерна.

Литература

- 1. Ганеев И.Р. Повышение эффективности сушки семян рапса с применением электромагнитного излучения. Уфа: Автореферат 2011.
- 2. Пилявский Л., Черников М., Гринберг Б. Из опыта сушки масличных культур. М: Мукомольно-элеваторная и комбикормовая промышленность 1986. №4.
- 3. Резчиков В.А. Инструкция по сушке зерна, семян масличных культур и эксплуатации зерносушилок. М: ВНИИЗ, 2001.