MPI-REALIZATION OF THE Random-Search Algorithm For Constrained Pseudo-Boolean Optimization
Kazakovtsev L.A.
Krasnoyarsk Agrarian University, Krasnoyarsk, Russia

Discrete optimization methods are nowadays the indispensable tools of effective management and control including water and energy management, land usage, production planning, telecommunication infrastructure optimization. Development of comparatively cheap parallel computer systems gives us an opportunity to implement the optimization algorithms for large-scale problems which let us use mathematical models without approximation and simplification of the problems. In this paper, we consider an approach to adaptation of the pseudo-Boolean optimization algorithm for clusters.
Our experiments [5,6] with adaptation of random search discrete optimization algorithms [1,2] for parallel execution gave us rather effective results with use of multiprocessor systems with shared memory and OpenMP [6]. But the intensive data interchange in running mechanisms of MPI reduce the efficiency of the realization of the same algorithms for PVM and MPI clusters when the number of the nodes increases. That issue makes the usage of the computing cluster ineffective in comparison with even low-cost multi-core systems. Branch-and-Bound and similar algorithms can be simply parallelized, they give precise results but their implementation for large-scale problems is possible for some of the problems only after taking into consideration the specific properties of the problem which may take more time. Our goal is developing of the pattern for the parallel random search algorithm applicable for a wide variety of modeling and optimization problems.
Pseudo-Boolean constrained optimization problem (of knapsack type) [1,2,3]:
[image: image2.png]F(X) =— max;

(1)
with constraints:
[image: image4.png]by = Ficonsta(X) = By;
< =(X) = By;

(XY= Byt

S

(2)
Here, X is a vector of Boolean variables.

For testing purposes, we used the following form of the objective function and constraints:
[image: image6.png]F(X)=

(3)
with constraints:
[image: image8.png]

(4)
[image: image10.png]1v1

(5)
The coefficients in the constrains in the test set are generated so that the feasible solutions set is 1000-1000000 smaller than 2N (depends on N and randomly selected values). The algorithm replaces the whole set of constraints with penalty function [2, 3, 5, 6].
Problem of a traveling salesman [1, 2, 8]:
[image: image12.png]F(X

— max;

(6)
The only constraint: matrix of Boolean variables X must describe the adjacency matrix of Hamiltonian graph. This cycle must be the only path in that graph. Here, aij is the distance (cost, time, etc.) between i-th and j-th places (cities), aii =0 for anyi, aij=ajifor anyi,j.Ifxij=1 then it means that the salesman must go from i-thplace to the j-th one.
Further attempts to optimize the program code and loops unrolling gave approximately 11% of speedup for the Intel compiler. We tried to solve the optimization problems in Argo cluster (SISSA, Trieste, Italy). The program code was adapted for MPI running. Serial algorithm [6] was changed (see fig.1). Following this flowchart gave negative results in comparison even with a single node (8 nodes, 2 processes per node, 50 variants of X sets in each generation on each node, 10000 Boolean variables, 11000 constraints).
Analysis of the problem showed that each node spent approximately 12% of time waiting for the other nodes to finish the calculation, data interchange between nodes in this case is rather intensive (10000 Boolean variables had to be sent from each node, then, each one had to receive 10000 real numbers of the probability vector after each step).
Reconstruction of the algorithm so that each node performs N steps (100-500 for that scale of the problem) separately, and comparing the results after the N-th steps, choosing the best ones by master nodes and broadcasting new probability vector gave much better results. But, in this case, each node had to spend up to 43% of time (!) waiting for the others to complete their calculations.
Fig.1. Algorithm for clusters
Conclusion: non-blocking operations fit better for the random discrete optimization.
The algorithm was re-written (fig.2) so that all the data transfer was performed at the step of checking of the restart conditions (bold for the steps performing message passing).
The results achieved by the program working on 8 nodes separately with comparison of the best result after the last step (4 nodes, 2 processes per node, 10000 Boolean variables, 11000 constraints, non-linear F(X)) this version of the algorithm achieves in half time (2 hours for the separately working nodes and 63 minutes for this version of the algorithm). The measurement problem was that I should measure the CPU time instead of real time but since 4 experiments with different data sets gave approximately the same results (about 2 times speed-up), I suppose that the speed-up is evident.
The last version of the algorithm, though it is rather efficient, has very low data interchange between nodes (log shows that there was only 3-15 data transfer sessions for each node during 1 hour). So, with this intensity of data traffic, there is no need to implement any expensive network to build an effective MPI cluster for random search problems solution. Ethernet is more than enough.

a) Initialization (at each node), MPI_INIT

b) Generating N random sets of variables X, estimating F(X) and constraints (at each node)

c) Choosing the best and the worst X sets, adaptation of the probability vector P (at each node separately)

d) if I am the master node then:

d1) check if any data transfer started at the previous steps has been completed

d1.1) if so, then if it was the maximum result reached by the k-th node,

check if this result is better than the global result

d1.1.1) if so, send message “OK” to the k-th node

d1.1.2) if not so, send “NOT OK” to the k-th node and

 send the actual global maximum and the corresponding

 X vector to the k-th vector

d1.2) if the completed data transfer contains the best vector X

d1.2.1) then recaclulate F(X) and if it is better than the

 global maximum, assume that this is the new global maximum

d2) if there are any messages from the other nodes waiting to be received and

no receiving processes are in progress, start

receiving (non-blocking, continue processing)

d3) check if the stop conditions are reached. If so, send “STOP” message to all the

 processes, wait for all of them to receive it and then MPI_FINALIZE, stop

e) if I am not the master node and I have already started any sending process then

e1) check if this process has been completed

e2) if so, start receiving of the answer from the master node

f) if I am not the master node and I am waiting for a response from the master then

f1) check if the master node has started sending anything

f2) if so, start receiving (non-blocking)

g) if I am not the master node and I have already started receiving smth. from the

master node then

g1) if the receiving has been completed then

 g1.1) if it was “OK” message, start sending my best X vector (non-blocking)

 g1.2) if it was “NOT OK” message, start receiving global best X vector

 (non blocking)

 g1.3) if it was the global best X vector, recalculate F(X) and,

if it is better than my own maximum, partially restart local process

to perform further search around the global maximum

 g1.4) if it was the “STOP” message, then stop, MPI_FINALIZE

h) Checking for the restart conditions (at each node separately), algorithm has to be restarted

if it hasn't improved the best results during several last steps

i) if the restart conditions are reached then

e1) if I am not the master node, start sending the best F(X) value

e2) reset probability vector

j) go to step b
Figure 2. Parallel algorithm description
Traveling salesman problem with 1000 points (1000000 variables) after 4 hours of calculation on 4 nodes hadn't given the exact results, the results were still improving at the last steps, problem with 500 points (250000 variables) after 4 hours of calculation gave rather good result (the only best path were intentionally included in the generated data set), very close to the optimal solution.
Conclusions:
- Blocking MPI operations give negative results in comparison with non-blocking ones for the random search problems. In case of fine granularity parallelization [9, 10], results are negative even in comparison with a single node;
- Though the realization of the simplest protocol with 6 kinds of messages is rather a complicated problem, non-blocking operations work fine, their implementation gives significant (2x) speedup in comparison with the simultaneous running of the same code at separate nodes;
- Using the high-performance clusters increases the maximum scale of the problems solved;
- To build the MPI cluster for random search problems, expensive high-performance network is not needed because of very low intensity of data traffic;
- Implementation of MPI does not decrease the productivity of a single node, OpenMP still gives perfect results in comparison with serial code.
References
1. Antamoshkin A.N. “Optimization of Functionals with Boolean Variables”, Tomsk University Press, Tomsk, 1987 (in Russian)
2. AntamoshkinA.N. (edited by) “System Analysis: Design, Optimization and Application”, Siberian Airspace Academy, Krasnoyarsk, 1996
3. Baba N. “Convergence of Random Search Optimization Methods for For Constrained Optimization Methods”, Journal of Optimization Theory and Applications, issue 33, 1981, pp.451-461
4. Birge J.R., Rosa C.H. “Parallel Decomposition of Large-Scale Stochastic Nonlinear Programs”, Annals of Operation Research, 1996, issue 64, pp. 39-65
5. Kazakovtsev L.A. “Adaptation of the Variant Probability Method for the Problems of Assortment Planning and Others”, Vestnik NII SUVPT, issue 6, Research Institute of Control Systems, Wave Processes and Technologies, Krasnoyarsk, 2001, pp. 42-50
6. Kazakovtsev L. “Adaptive Model of Static Routing for Traffic Balance between Multiple Telecommunication Channels to Different ISPs”, http://eprints.ictp.it/415
7. Mühlenbein H., Shomisch M, Born J. “The parallel Genetic Algorithm as Function Optimizer”, Proceedings of the fourth Conference of Genetic Algorithms. Morgan Kaufmann, San Mateo,1991, pages 271-278
8. Pardalos, P. M. Pitsoulis, L. Mavridou, T. Resende, M. G. C. “Parallel Search for Combinatorial Optimization: Genetic Algorithms, Simulated Annealing, Tabu Search and GRASP”, Lecture Notes in Computer Science, 1995, issue 980, pp 317- 331
9. Rinaudoy S., Moschellay F., Anilez M.A. “Controlled Random Search Parallel Algorithm for Global Optimization with Distributed Processes on Multivendor CPUs”, http://citeseer.ist.psu.edu/710446.html .
10. Spiessens P., Manderick B. “A Massively Parallel Genetic Algorithm: Implementation and First Analysis”, Proceedings of the fourth Conference of Genetic Algorithms. Morgan Kaufmann, San Mateo,1991, pages 279-286

Initialization

Random set X of variables generating,

F(X) and constraints calculation

Random set X of variables generating,

F(X) and constraints calculation

Random set X of variables generating,

F(X) and constraints calculation

Gathering the best and the worst results and corresponding X sets

scattering the new probability vector to all nodes

Choosing the best and the worst results gathered from all nodes, probability vector adaptation for adjusting further X' generation,

Checking for the restart conditions, partial rollback or full restart if needed (i.e. initialization of the probability vector)

