Основы научных исследований в агрономии

электронный учебно-методический комплекс

МОДУЛЬ 1. Планирование полевого опыта

Тема 1.6. Особенности закладки и проведения лабораторных и лизиметрических опытов

Особенности техники проведения лабораторного опыта

Лабораторный эксперимент - исследование, осуществляемое в лабораторной обстановке с целью установления действия и взаимодействия факторов на изучаемые объекты (химические, физико-химические). Проводят лабораторные опыты как в обычных (комнатных), так и в искусственных строго контролируемых условиях – термостатах, боксах и климатических камерах, позволяющих строго контролировать свет, температуру, влажность воздуха и другие факторы.

Лабораторные методы находят широкое применение в агрономии. Как метод для самостоятельных исследований применяют для различных целей:

      - в агрохимии для определения потребности почв в удобрениях;
      - в физиологии для изучения физиологических процессов – ассимиляции углерода, дыхания растений, испарения и всасывания воды;
      - в биохимии для определения биохимических процессов и содержания различных веществ – белков, жиров, углеводов, алкалоидов, витаминов, минеральных веществ;
      - в селекции для исследования свойств и качеств растений – зимостойкости, засухоустойчивости, устойчивости против болезней, различных технологических качеств растений.

Широкое распространение получили и такие методы, как фотометрия, хромотография, спектроскопия, атомно-абсорбционная спектрофотометрия, рентгенофлуоресцентный, масс-спектроскопия.

Физические и химические методы анализа сами по себе точны и дают верное представление о содержании тех или иных веществ в почве и растениях, о структуре почв. Большим достоинством лабораторных методов является быстрота и высокая точность их определения; недостаток – в оценке значения отдельных элементов и результатов анализа не участвует главный объект агрономии – само растение, его урожай. В зависимости от целей и задач исследований экспериментатор может смоделировать и изучить в лабораторных условиях течение почвенных процессов, различные режимы и балансы, изменение количественного и видового состава живой фазы почвы.

Для научного обоснования эффективности изучаемых агротехнических приемов надо знать свойства почв, на которых проводят опыт. Плодородие почвы в значительной степени определяют физические ее свойства, но поскольку они постоянно изменяются от воздействия природных факторов и агротехнических приемов (обработка удобрения, известь, возделываемые сельскохозяйственные культуры и т. д.), необходимы детальные наблюдения за их изменением. В условиях производственного опыта наиболее важны исследования влажности почвы и плотности почвы, качества ее разделки и биологические свойства. Они дают ключ к разгадке многих явлений, причин снижения или увеличения урожайности, а также позволяют наметить мероприятия по устранению неблагоприятных факторов.

Определение водно-физических свойств почв

Влажность устойчивого завядания. В период роста и развития растений часто наблюдается их завядание из-за острого дефицита воды в почве, запасы которой равны влажности устойчивого завядания, когда потребление влаги из почвы для растений становится практически невозможным. Следовательно, запасы доступной для растений воды не могут быть определены, если неизвестна влажность устойчивого завядания.

"В производственных опытах для расчета можно использовать метод определения влажности устойчивого завядания по максимальной гигроскопичности, при котором влажность завядания, или коэффициент завядания, принимается равным приблизительно 1,34 максимальной гигроскопичности. Так, если ее показатель для средних суглинков составляет 5-6% массы сухой почвы, ориентировочную влажность устойчивого завядания для данной почвы можно найти умножением показателя на коэффициент 1,34; она составит 6,7-8%, что служит границей (пределом) запаса доступной растениям влаги.

Влагоемкость почвы – способность почвы впитывать и удерживать воду. Практический интерес в опытной работе представляют три вида ее: наименьшая (полевая), капиллярная и полная, или водовместимость.

Полевая влагоемкость – наибольшее количество капиллярно-подвижной воды, которое может удержать почва менисковыми или капиллярными силами сцепления после стекания всей гравитационной воды. Для ее определения на опытном поле подбирают выровненную площадку размером 1× 1 м2. На ней проводят рыхление вручную, имитируя обработку почвы под испытываемую культуру. Площадку огораживают насып¬ными валиками высотой 30-40 см и шириной 40-50 см. Для установления количества воды, потребного для заливки площадки на заданную глубину до полевой влагоемкости, проводят предварительный расчет объемной и удельной массы, влажности и скважности почвы. Эти показатели определяют по общепринятым методам, используя образцы почвы, взятые вблизи заливаемой площадки.

Рассчитанное количество воды постепенно подают на площадку, поддерживая при этом уровень напора воды высотой 5-6 см. После впитывания влаги в почву площадку закрывают полиэтиленовой пленкой и соломой для предохранения испарения влаги. Для установления равновесного состояния влажности по профилю почву в таком виде выдерживают: песчаную и супесчаную – сутки, суглинистую – двое-трое суток и глинистую – трое-четверо суток. Затем проводят послойное определение влажности, величина которой характеризует полевую влагоемкость. Оценивают ее по соотношению со скважностью почвы. Так, полевую влагоемкость 70-80% показателя скважности принято считать благоприятной для роста и развития растений, 80-90% – менее благоприятной и свыше 90% – неудовлетворительной.

Капиллярная влагоемкость – максимальное количество капиллярно-подпертой снизу воды, содержащейся в капиллярных промежутках почвы, выражают в процентах от массы или объема почвы. Величина ее за¬висит от крупности пор, механического и агрегатного состава, плотности, а также уровня стояния грунтовых вод, капиллярно поднимающихся к верхним слоям почвы.

Для получения данных о капиллярной влагоемкости берут шесть - восемь образцов почвы с ненарушенным строением. Послойный отбор их проводят буром с вставными стальными патронами (цилиндры 200-500 см3) с плотно закрывающимися крышками. Перед насыщением их водой нижнее дно закрывают металлической крышкой с сеткой и вложенным кружком фильтровальной бумаги (можно использовать фильтровальную бумагу, марлю, вату и т. д.). После взвешивания патроны ставят в ванночку с водой, при этом концы марли или фильтровальной бумаги должны быть опущены в воду, что обеспечивает непрерывный подток воды снизу. Обычно через четыре-пять дней происходит капиллярное насыщение почвы. После того как масса патронов станет постоянной, их взвешивают.

Скважность (порозность) почвы, суммарный объем всех почвенных пор, заполненных водой и воздухом, характеризует величину по л ной полевой влагоемко с т и и величину воздухоемкости. Воздухоемкость вычисляют по разности между общей скважностью и влажностью почвы, выраженной в объемных процентах.

Водопроницаемость – способность почвы впитывать и пропускать через себя воду (под влиянием силы тяжести), поступающую с поверхности. Величина этого показателя зависит от химического и механического состава почвы, структуры, плотности, влажности и ряда других факторов, она имеет значение для агрономической оценки почв и мелиоративных работ.

При поступлении воды с поверхности вглубь почвы водопроницаемость характеризуют двумя фазами: впитыванием (насыщение влагой почвы) и фильтрацией (просачивание влаги в нижние горизонты почвы).

В полевых условиях определение водопроницаемости проводят методом заливки. Для этого на опытном поле выбирают наиболее типичную площадку и врезают в почву на глубину 6-10 см металлическую раму площадью 25 × 25 см. С внешней стороны ее врезают вторую раму 50 × 50 см; высота стен рам – 20-25 см. Забивают их молотком, ударяя по доске, положенной на раму. Поч¬ву снаружи и внутри у стенок рам уплотняют. Затем в обе площадки заливают воду, поддерживая ее постоянный уровень 5 см. Уровень впитывания и количество подливаемой воды определяют при помощи линейки, укрепленной во внутренней раме: учет начинают через 2—3 мин после начала опыта, затем – через каждые 5-10 мин. Интервалы наблюдений могут быть увеличены до 30 мин и даже 1 ч. Одновременно определяют температуру воды. Примерный срок наблюдения: на песчаных и супесчаных почвах – 2-3 ч; на суглинистых – 4-6 и на глинистых – 8-10 ч.

Высота столба воды, которая поступает сверху вниз по толщине почвы за единицу времени, указывает на скорость впитывания и фильтрации.

Чаще всего лабораторные исследования являются сопутствующими при широких агрономических исследованиях.

Особенности техники проведения лизиметрического опыта

Изучение выщелачивания органических и минеральных соединений из почвы и внесенных в нее удобрений, контроль за динамикой влажности, просачиванием атмосферных осадков и поливных вод и вымыванием с ними питательных элементов с помощью специальных приборов – лизиметров называют лизиметрическими исследованиями, или лизиметрическими опытами.

С помощью лизиметров изучают потери питательных веществ в зависимости от норм, форм, сроков и способов внесения удобрений под посевами и без растений с целью обоснованного определения необходимого баланса питательных веществ в почве. В лабораторных условиях в лизиметрах изучают закономерности и скорости передвижения воды и содержащихся в ней питательных веществ через определенные слои почвы для обоснования и разработки рациональных приемов и способов внесения и заделки удобрений.

Вода в почве, в зависимости от количества осадков, рельефа, физического сложения и гранулометрического состава почвы, вида и состояния возделываемых растений может просачиваться на любую глубину, но наиболее распространенные типы лизиметров рассчитаны в большинстве случаев на глубину в 1 м от поверхности почвы.




Рис. 1. Примерная схема расположения лизиметров на участке


Отбирать пробы просачивающихся вод в зависимости от конструкции прибора можно из слоев разной мощности. Существует несколько конструкций лизиметров, отличающихся приспособлениями для сбора просачивающихся вод и растворенных в ней веществ.


Лизиметры изготавливают различных размеров в виде цилиндров, кубов, параллелепипедов или воронок. Причем, стенки и дно лизиметров должны быть из влагонепроницаемых материалов: бетона, металла, кирпича, пластмассы.

Рис. 2. Внешний вид территории участка с лизиметрами


Для стока просачивающийся через почву лизиметра воды дно его должно иметь уклон в определенную сторону, где имеется отверстие, через которое просочившаяся вода через трубки соединяется с приемником (емкостью) для сбора фильтрата. Для улучшения стока просочившийся воды на дне каждого цилиндра укладывают дренирующий слой из гравия, песка или щебня. Различают лизиметра по состоянию наполненной в них почвы:

      - с почвой естественного сложения;
      - с насыпной почвой.

При использовании лизиметров с насыпной почвой, ее предварительно просеивают и набивают послойно с сохранением природной последовательности размещения генетических горизонтов, причем при набивке каждый слой уплотняют до естественного объема.

Для сравнительных исследований лизиметры размещают группами по 10 шт. и более в два или более ряда с определенными расстояниями между ними и отдельными приборами, вкапывая их в грунт так, чтобы уровень почвы в них совпадал с поверхностью окружающей среды. Для учета количеств выпадающих осадков рядом с лизиметрами располагают дождемеры.

Приемники сбора просачивающихся через почву лизиметров вод помещают в подземных сооружениях (коридорах, траншеях, ямах), хорошо изолированных от атмосферных осадков, а в осенне-зимне-весенний период от резких перепадов температур. Устанавливают лизиметры вблизи лабораторий для удобства проведения наблюдений в любое время года и суток, а пространственно размещают так, чтобы обеспечить нормальное освещение посевов и защиту их от птиц и животных.

Для длительных многолетних исследований лизиметры делают из бетона или бетонированного кирпича с площадью поверхности каждого от 1 до 4 м2, иногда и более, с глубиной обычно 1 м. Располагают лизиметры парами рядов, между каждой парой рядов делают подземный коридор, в который выходят трубки из каждого лизиметра со сменными приемниками для сбора фильтрующихся растворов. Бетонные и кирпичные лизиметры после строительства заполняют насыпной почвой.



Рис. 3. Схема строения лизиметра (вид сбоку)


Металлические и пластмассовые лизиметры применяют для работы с насыпными почвами и с почвами естественного сложения, причем площадь поверхности и объем почвы в них, обычно, всегда значительно меньше, чем в стационарных бетонных или кирпичных лизиметрах. В опытах с насыпной почвой на дно лизиметров укладывают дренаж из гравия и песка, а через отверстие в дне трубками подсоединяют приемники для сбора фильтрата.

Далее наполненные почвой лизиметры закапывают непосредственно в грунт или в другой сосуд большого объема, предварительно вкопанный в грунт. На одном уровне с поверхностью окружающей почвы. Внешний сосуд служит для укрепления стенок ямы и удержания с помощью разных приспособлений лизиметров в нем, причем зазоры между лизиметром и внешним сосудом следует закрывать водонепроницаемыми материалами.

Для заполнения почвой без существенного нарушения ее естественного сложения применяют лизиметры с отделяющимся дном, нижние стенки которых заострены. Такой полый цилиндр или параллелепипед врезают в почву полностью, затем осторожно выкапывают его вместе с содержащейся в нем почвой. Дно воронкообразной формы, заполненной дренажным материалом, с отверстием для сбора фильтрата плотно прикрепляют к выкопанному лизиметру с почвой. Переносят лизиметр на заранее подготовленное место, соединяют с приемником и помещают на одинаковом уровне с окружающей почвой. Следует подчеркнуть, что при взятии почвы в естественном сложении применяют лизиметры небольших размеров: диаметром 10-20 см и длиной (глубиной) – 20-30 см, так как при больших объемах сосудов вдавить и вырыть сосуды, не нарушая естественного сложения почв чрезвычайно трудно. Наиболее удобно при работе с почвой естественного сложения использовать лизиметрические воронки, так как они не имеют боковых стенок. Цинковые воронки диаметром 25-50 см имеют глубину 5 см, края их загнуты вверх на 0,5 см и заострены, выходное отверстие прикрыто цинковым кружком с отверстиями 2 мм, вся воронка заполнена дренирующими материалами.

Для установки воронок роют траншею глубиной на 50 см больше желаемого размещения каждой воронки. На вертикальной стене траншеи делают ниши на той глубине, на которой запланировано помещать каждую воронку. В ниши вводят воронки, врезают острыми краями их в потолки ниш. Трубками соединяют воронки с приемниками, размещенными в наиболее глубокой части траншеи. Пустоты в нишах, а также мелкую часть траншеи засыпают почвой, стенки траншеи закрепляют досками. Накрывают траншею досками, затем изолирующим материалом и засыпают землей, не забывая оставить люк с крышкой и лестницей для удобства проникновения к приемникам. Размещают воронки обычно на расстоянии 30-100 см друг от друга вдоль траншеи.

При постановке опытов в лизиметрах следует иметь в виду, что все осадки, попавшие на площадь лизиметра со стенками, проходят через содержащуюся в нем почву, так как стенки лизиметра обычно немного выше уровня почвы в нем. В естественных условиях, как правило, 20-25% воды сбегает с поверхности по уклонам рельефа. Следовательно, в лизиметры со стенками осадков попадает больше, чем в естественных условиях и в лизиметрических воронках. Наличие дна у лизиметров прерывает слои почвы и приводит к появлению воздушной прослойки, мешающей свободному движению гравитационной воды вниз. Поэтому в лизиметрах влажность несколько больше, чем в таком же слое естественной почвы. Просачивание воды в лизиметрах зависит от глубины их; в более глубоких оно относительно выше, чем в мелких. Поэтому при равных площадях и малом количестве осадков испарение влаги более интенсивно происходит с поверхности мелких, а не глубоких лизиметров.

Количество фильтрующейся влаги в лизиметрах при равных количествах осадков зависит от гранулометрического состава почвы, температурного режима и времени года, от наличия растений и фазы их развития, от способов наполнения лизиметров: в насыпных лизиметрах почва уплотняется, и скорость фильтрации уменьшается в сравнении с лизиметрами, в которых сохранено естественное сложение почвы.

Таким образом, абсолютное значение динамики влажности почвы в лизиметрических опытах отличаются от аналогичных данных, полученных в естественных условиях. Вместе с этим проведение в лизиметрах одной конструкции по конкретной схеме обеспечивает получение сравнимых, относительных результатов в пределах заданной схемы. Так как вымывание питательных веществ из почвы непосредственно связано с просачиванием влаги сквозь нее, результаты исследований в лизиметрах в значительной степени зависят от конструкции лизиметров, глубины их, времени наблюдений, наличия растений и других факторов, влияющих на интенсивность просачивания влаги.

Контрольные вопросы



Контрольные вопросы

  1. В чем сущность лабораторного метода исследования в агрономии?
  2. Для чего необходимы лабораторные исследования в агрономии?
  3. Перечислите какие лабораторные методы используются при анализе сельскохозяйственных объектов?
  4. В чем суть лизиметрического метода?
  5. Для каких целей используют лизиметрический метод?
  6. Расскажите о принципиальной схеме лизиметра?

© ФГОУ ВПО Красноярский государственный аграрный университет

© Центр дистанционного обучения